1^5+2^5+3^5+.+n^5及任意次方求和

原创 2018年04月15日 21:03:34

数列求和(1).1^4+2^4+3^4+.+n^4 (2).1^5+2^5+3^5+.+n^5

以下证明利用到:1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6和1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2;
证明:(1)2^5=(1+1)^5=1^5+5×1^4+10×1^3+10×1^2+5×1^1+1
3^5=(2+1)^5=2^5+5×2^4+10×2^3+10×2^2+5×2^1+1
……
(n+1)^5=n^5+5×n^4+10×n^3+10×n^2+5×n^1+1
上式相加,相同项消去
(n+1)^5=1^5+5×(1^4+2^4+……+n^4)+10×(1^3+2^3+……+n^3)+10×(1^2+2^2+……n^2)+5×(1+2+……+n)+(1+1+……+1)
5×(1^4+2^4+……+n^4)=(n+1)^5-10×[n(n+1)/2]^2-10×n(n+1)(2n+1)/6-5×n(n+1)/2-n-1
化简得1^4+2^4+……+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30 
(2)方法和上面差不多,把左边的5次方改为6次方即可,在此不再赘述.
结果为(n+1)^2 * n^2 * (2n^2+2n-1) / 12

追问:
写出(2)的具体过程才能加分
追答:
2^6=(1+1)^6=1^6+6×1^5+15×1^4+20x1^3+15×1^2+6×1^1+1 3^6=(2+1)^6=1^6+6×2^5+15×2^4+20x2^3+15×2^2+6×2^1+1 …… (n+1)^6=1^6+6×n^5+15×n^4+20xn^3+15×n^2+6×n^1+1, 上式相加,相同项消去 (n+1)^6=1^6+6×(1^5+2^5+……+n^5)+15×(1^4+2^4+……+n^4)+20×(1^3+2^3+……n^3)+15x(1^2+2^2+……n^2)+6×(1+2+……+n)+(1+1+……+1) 1^5+2^5+3^5+.......+n^5 = (n+1)^2 x n^2 x(2n^2+2n-1) / 12



1^5+2^5+3^5+……+n^5=
1*C(1,n)+31*C(2,n)+180*C(3,n)+390*C(4,n)+360*C(5,n)+120*C(6,n)
求1^5+2^5+3^5+…+n^5.
首先写出和式的前6项
即1^5=1 2^5=32 3^5=243 4^5=1024 5^5=3125 6^5=7776
再求出相邻两数之差,得
31 211 781 2101 4651
再次求出相邻两数之差,得
180 570 1320 2550
再次求,一直求到只剩一个数为止
390 750 1230
360 480
120
最后,取每一组数的第一个数(包括原数组),得:1,31,180,390,360,120
则1^5+2^5+3^5+……+n^5=
1*C(1,n)+31*C(2,n)+180*C(3,n)+390*C(4,n)+360*C(5,n)+120*C(6,n)
对于某一个p,有一种通法可以求1^p+2^p+3^p+...+n^p.
首先写出这个和式的前(p+1)项,

1^p 2^p 3^p 4^p …… (p+1)^p
然后求出相邻两数之差,得到的差有p个
再求出差的相邻两数之差,得到的差有(p-1)个
一直求下去,求到只剩一个差为止.
最后,包括原数组1^p 2^p 3^p 4^p …… (p+1)^p,一共有(p+1)组数.
取每组数的第一个数a1、a2、a3、a4……a(p+1)(注:这(p+1)个数的顺序为为求得差时的顺序.)
则1^p+2^p+3^p+...+n^p
=a1*C(1,n)+a2*C(2,n)+a3*C(3,n)+…+a(p+1)*C(p+1,n)

版权声明:转载请注明:http://blog.csdn.net/update7?viewmode=contents https://blog.csdn.net/update7/article/details/79953240

python基础学习

一、输入中文乱码问题解决方案     方法1:在第一行或者第二行输入  #coding:utf-8     方法2:在第一行或者第二行输入  #-*-coding:utf-8 -*-     方法3:...
  • jj546630576
  • jj546630576
  • 2017-07-07 10:00:04
  • 73

Oracle SQL基础

00、准备工作 查看账户状态 select username, account_status from dba_users where username='SCOTT'; 解锁账户 alt...
  • yumushui
  • yumushui
  • 2014-07-18 14:11:54
  • 883

思考项目 求1+2的2次方+3的3次方+4的4次方+5的5次方+6的6次方的值。(异种循环嵌套)

/*   * Copyright (c) 2014, 烟台大学计算机学院   * All rights reserved.   * 文件名称:test.cpp   * 作    者:刘畅    * 完...
  • Liuchang54
  • Liuchang54
  • 2014-10-22 18:38:57
  • 2826

找出所有的水仙花数:例如:153=1*1*1+5*5*5+3*3*3

/** * 找出所有的水仙花数:例如:153=1*1*1+5*5*5+3*3*3 */ int num=100; System.out.print("所有的水仙花数:"); do { in...
  • yecaoysg
  • yecaoysg
  • 2016-07-30 19:13:12
  • 520

大一初学者C语言复习:N个规律数求和,如1/1+2/3+3/5+4/7+4/9+……

题目:输入N,实现N个规律数求和,如1/1+2/3+3/5+4/7+4/9+…… 代码: int main() {   int N,i;   double sum,temp;   su...
  • niudaidai233
  • niudaidai233
  • 2018-01-16 11:03:35
  • 240

求”水仙花数“,例:153是水仙花数,153=1*1*1 + 5*5*5 + 3*3*3

  • qq_37712328
  • qq_37712328
  • 2018-03-26 18:46:30
  • 22

挑战面试编程:大整数的加、减、乘、除

大整数的加、减、乘、除 一切都是有限的,哪怕是看起来无限的时间或空间都很可能是有限的。在计算机中内置类型的加、减、乘、除都是有限的。我们来实现一个“无限”的大整数加、减、乘、除。 以下使用C+...
  • zhangxiangDavaid
  • zhangxiangDavaid
  • 2015-06-10 10:59:15
  • 3330

算法提高 ADV-185 五次方数

问题描述   对一个数十进制表示时的每一位数字乘五次方再求和,会得到一个数的五次方数   例如:1024的五次方数为1+0+32+1024=1057   有这样一些神奇的数,它的五次方数就是...
  • smile_caijx
  • smile_caijx
  • 2017-09-17 09:09:01
  • 330

五次方数

原题目 问题描述    对一个数十进制表示时的每一位数字乘五次方再求和,会得到一个数的五次方数 例如:1024的五次方数为1+0+32+1024=1057    有这样一些神奇的...
  • Ray__Chan
  • Ray__Chan
  • 2016-12-19 17:10:08
  • 1061

Java-蓝桥杯- 基础练习 特殊的数字

题目问题描述   153是一个非常特殊的数,它等于它的每位数字的立方和,即153=1*1*1+5*5*5+3*3*3。编程求所有满足这种条件的三位十进制数。 输出格式   按从小到大的顺序输出满足条件...
  • qq_38345606
  • qq_38345606
  • 2018-01-19 17:39:08
  • 63
收藏助手
不良信息举报
您举报文章:1^5+2^5+3^5+.+n^5及任意次方求和
举报原因:
原因补充:

(最多只允许输入30个字)