n
4
−
(
n
−
1
)
4
=
4
n
3
−
6
n
2
+
4
n
−
1
n^4-(n-1)^4=4n^3-6n^2+4n-1
n4−(n−1)4=4n3−6n2+4n−1
(
n
−
1
)
4
−
(
n
−
2
)
4
=
4
(
n
−
1
)
3
−
6
(
n
−
1
)
2
+
4
(
n
−
1
)
−
1
(n-1)^4-(n-2)^4=4(n-1)^3-6(n-1)^2+4(n-1)-1
(n−1)4−(n−2)4=4(n−1)3−6(n−1)2+4(n−1)−1
…
2
4
−
1
4
=
4
∗
2
3
−
6
∗
2
2
+
4
∗
2
−
1
2^4-1^4=4*2^3-6*2^2+4*2-1
24−14=4∗23−6∗22+4∗2−1
1
4
−
0
4
=
4
∗
1
3
−
6
∗
1
2
+
4
∗
1
−
1
1^4-0^4=4*1^3-6*1^2+4*1-1
14−04=4∗13−6∗12+4∗1−1
将上面
n
n
n式相加,可得
∴
n
4
=
4
(
1
3
+
2
3
+
.
.
.
+
n
3
)
−
6
(
1
2
+
2
2
+
.
.
.
+
n
2
)
+
4
(
1
+
2
+
.
.
.
+
n
)
−
n
\therefore n^4=4(1^3+2^3+...+n^3)-6(1^2+2^2+...+n^2)+4(1+2+...+n)-n
∴n4=4(13+23+...+n3)−6(12+22+...+n2)+4(1+2+...+n)−n
∵
1
2
+
2
2
+
3
2
+
.
.
.
+
n
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
\because 1^2+2^2+3^2+...+n^2=\frac{n(n+1)(2n+1)}{6}
∵12+22+32+...+n2=6n(n+1)(2n+1)
4
(
1
3
+
2
3
+
.
.
.
+
n
3
)
=
n
4
+
n
(
n
+
1
)
(
2
n
+
1
)
−
2
n
(
n
+
1
)
+
n
=
n
4
+
2
n
3
+
n
2
=
n
2
(
n
+
1
)
2
4(1^3+2^3+...+n^3)=n^4+n(n+1)(2n+1)-2n(n+1)+n=n^4+2n^3+n^2=n^2(n+1)^2
4(13+23+...+n3)=n4+n(n+1)(2n+1)−2n(n+1)+n=n4+2n3+n2=n2(n+1)2
1
3
+
2
3
+
.
.
.
+
n
3
=
(
n
(
n
+
1
)
2
)
2
=
(
1
+
2
+
.
.
.
+
n
)
2
1^3+2^3+...+n^3=(\frac{n(n+1)}{2})^2=(1+2+...+n)^2
13+23+...+n3=(2n(n+1))2=(1+2+...+n)2