1^3+2^3+3^3+...+n^3通项公式

n 4 − ( n − 1 ) 4 = 4 n 3 − 6 n 2 + 4 n − 1 n^4-(n-1)^4=4n^3-6n^2+4n-1 n4(n1)4=4n36n2+4n1
( n − 1 ) 4 − ( n − 2 ) 4 = 4 ( n − 1 ) 3 − 6 ( n − 1 ) 2 + 4 ( n − 1 ) − 1 (n-1)^4-(n-2)^4=4(n-1)^3-6(n-1)^2+4(n-1)-1 (n1)4(n2)4=4(n1)36(n1)2+4(n1)1

2 4 − 1 4 = 4 ∗ 2 3 − 6 ∗ 2 2 + 4 ∗ 2 − 1 2^4-1^4=4*2^3-6*2^2+4*2-1 2414=423622+421
1 4 − 0 4 = 4 ∗ 1 3 − 6 ∗ 1 2 + 4 ∗ 1 − 1 1^4-0^4=4*1^3-6*1^2+4*1-1 1404=413612+411

将上面 n n n式相加,可得
∴ n 4 = 4 ( 1 3 + 2 3 + . . . + n 3 ) − 6 ( 1 2 + 2 2 + . . . + n 2 ) + 4 ( 1 + 2 + . . . + n ) − n \therefore n^4=4(1^3+2^3+...+n^3)-6(1^2+2^2+...+n^2)+4(1+2+...+n)-n n4=4(13+23+...+n3)6(12+22+...+n2)+4(1+2+...+n)n
∵ 1 2 + 2 2 + 3 2 + . . . + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \because 1^2+2^2+3^2+...+n^2=\frac{n(n+1)(2n+1)}{6} 12+22+32+...+n2=6n(n+1)(2n+1)
4 ( 1 3 + 2 3 + . . . + n 3 ) = n 4 + n ( n + 1 ) ( 2 n + 1 ) − 2 n ( n + 1 ) + n = n 4 + 2 n 3 + n 2 = n 2 ( n + 1 ) 2 4(1^3+2^3+...+n^3)=n^4+n(n+1)(2n+1)-2n(n+1)+n=n^4+2n^3+n^2=n^2(n+1)^2 4(13+23+...+n3)=n4+n(n+1)(2n+1)2n(n+1)+n=n4+2n3+n2=n2(n+1)2
1 3 + 2 3 + . . . + n 3 = ( n ( n + 1 ) 2 ) 2 = ( 1 + 2 + . . . + n ) 2 1^3+2^3+...+n^3=(\frac{n(n+1)}{2})^2=(1+2+...+n)^2 13+23+...+n3=(2n(n+1))2=(1+2+...+n)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值