证明:对于一个矩形A,可以找到另一个矩形B的周长和面积都为A的n倍(一)

  本章讨论,当n≥1时是否存在。

据题意,设B的长和宽为xyA的长宽分别为ab,得方程组:

x + y = n ( a + b )

x y = a b n

由①得:③y = a n + b n – x

将③带入②得:

x ( a n + b n – x ) = a b n

x2 – a n x – b n x + a b n = 0

设在④中Δ<0,则可得:

[ - ( a + b ) n ]2 – 4 * 1 * a b n < 0

a2 n2 + 2 a b n2 + b2 n2 – 4 a b n < 0

a2 n2 + 2 a b n2 + b2 n2 < 4 a b n

∵ n≥1 ∴ 2 a b n2 ≥ 2 a b n

可得:

a2 n2 + b2 n2 < 2 a b n

( a n + b n )2 – 2 a b n2 < 2 a b n

( a + b )2 n2 < 2 a b n ( n + 1 )

( a + b )2 n < 2 a b ( n + 1 )

n = 1

( a + b )2 < 4 a b

( a – b )2 < 0

a > 0b > 0 相矛盾(( a – b )2 ≥ 0

n > 1 时,把2 a b n2 ≥ 2 a b n代回。

( a + b )2 n + 2 a b n2 < 2 a b ( n + 1 ) + 2 a b n

( a2 + 2 a b + b2 + 2 a b n ) n < 2 a b ( n + 1 ) – 2 a b n

[ ( a + b )2 + 2 a b n ] n < 2 a b

∵ a > 0,b > 0,n > 1

∵( a + b )2 > 2 a b

[ ( a + b )2 + 2 a b n ] n > 2 a b

[ ( a + b )2 + 2 a b n ] n < 2 a b[ ( a + b )2 + 2 a b n ] n > 2 a b矛盾

∴Δ≥0,即当n≥1时,可以得到一个矩形B的周长和面积均为给定矩形An

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试