思路:一开始想到用dfs一个一个枚举(虽然最后还是没想到用dfs怎么枚举)后来看到这个N过于庞大,于是猜想是不是用到动态规划,一开始打算用dp[i]表示到第i个数字的最大序列长度,和LIS有点类似,然后发现只过了一个测试
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;
string a[N];
int n,ans;
int dp[N];
bool jd(string a,string b)
{
int a1=a.length();
if(a[a1-1]==b[0]) return true;
return false;
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
dp[1]=1; //dp都不要忘记初始化!!!!
for(int i=1;i<=n;i++)
for(int j=1;j<i;j++)
{
if(jd(a[j],a[i]))
{
dp[i]=max(dp[i],dp[j]+1);
ans=max(ans,dp[i]);
}
}
cout<<n-ans;
return 0;
}
然后看大佬的代码,发现大佬是用dp[i]表示以i结尾的子序列的长度,于是状态转移方程可以写成
dp[b]=max(dp[a]+1,dp[b]);其中a,b是该子序列最后一个元素的第一个数字和最后一个数字
关于这个状态转移方程,一开始我还理解成dp[i]有两个含义,一个是以i开头的数字,一个是以i结尾的子序列长度,后来又发现这两个是同一个东西
最后的最后,千万不要忘记初始化,我用dp的时候经常忘记初始化
AC代码如下
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;
string a[N];
int n,ans=1;
int dp[N];
int l[N],r[N];
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
string t=a[i];
l[i]=t[0]-'0',r[i]=t[t.length()-1]-'0';
// dp[i]=1;
}
// dp[1]=1;
for(int i=1;i<=n;i++)
{
int a=l[i],b=r[i];
dp[b]=max(dp[a]+1,dp[b]);
ans=max(ans,dp[b]);
}
cout<<n-ans;
return 0;
}