蓝桥杯 c&c++大学B组 试题E 接龙数列

思路:一开始想到用dfs一个一个枚举(虽然最后还是没想到用dfs怎么枚举)后来看到这个N过于庞大,于是猜想是不是用到动态规划,一开始打算用dp[i]表示到第i个数字的最大序列长度,和LIS有点类似,然后发现只过了一个测试

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;
string a[N];
int n,ans;
int dp[N];
bool jd(string a,string b)
{
    int a1=a.length();
    if(a[a1-1]==b[0]) return true;
    return false;
}
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++) cin>>a[i];
    dp[1]=1;                //dp都不要忘记初始化!!!!
    for(int i=1;i<=n;i++)
        for(int j=1;j<i;j++)
        {
            if(jd(a[j],a[i]))
            {
                dp[i]=max(dp[i],dp[j]+1);
                ans=max(ans,dp[i]);
            }
        }
    cout<<n-ans;
    
    return 0;
 }

然后看大佬的代码,发现大佬是用dp[i]表示以i结尾的子序列的长度,于是状态转移方程可以写成

dp[b]=max(dp[a]+1,dp[b]);其中a,b是该子序列最后一个元素的第一个数字和最后一个数字

关于这个状态转移方程,一开始我还理解成dp[i]有两个含义,一个是以i开头的数字,一个是以i结尾的子序列长度,后来又发现这两个是同一个东西

最后的最后,千万不要忘记初始化,我用dp的时候经常忘记初始化

AC代码如下

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;
string a[N];
int n,ans=1;
int dp[N];
int l[N],r[N];
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++) 
	{
		cin>>a[i];
		string t=a[i];
		l[i]=t[0]-'0',r[i]=t[t.length()-1]-'0';
//		dp[i]=1;
	}
//	dp[1]=1;
	for(int i=1;i<=n;i++)
	{
		int a=l[i],b=r[i];
		dp[b]=max(dp[a]+1,dp[b]);
		ans=max(ans,dp[b]);
	}
	cout<<n-ans;
	
	return 0;
 } 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值