问题描述
一个人掷一个六面的骰子,骰子的面数为1到6。每次掷到几,就向前走几格。可以无限次掷骰子。问:恰好经过第2025格的概率是多少?
题解
理解问题
我们需要计算的是,在无限次掷骰子的过程中,恰好停留在第2025格的概率。这里的“恰好经过”可以理解为在某一步正好到达第2025格,而不是越过它。
模型建立
这实际上是一个随机游走(Random Walk)问题,其中每一步的步长是1到6之间的整数,且每个步长的概率都是1/6。我们需要计算的是,从起点0出发,经过若干步后恰好到达2025的概率。
设 P(n)为恰好到达第 n 格的概率。我们需要求 P(2025)。
递推关系的建立
考虑如何到达第 n 格。要到达第 n 格,最后一步必须是从 n−k 格前进k 格,其中 k 是1到6之间的整数。因此,P(n) 可以表示为: