NOI Online #3 rm组 题解

这篇博客提供了NOI Online #3入门组的比赛题解,包括Problem 1:最急救助,Problem 2:观星和Problem 3:买表。最急救助是模拟题,观星是联通块基础题,买表则是二进制优化多重背包问题。博主分享了每道题的解题思路和复杂度分析,并提供了部分代码示例。总结中博主提到本次比赛难度较低但质量下滑,表示遗憾未能全部AC。
摘要由CSDN通过智能技术生成

NOI Online #3 入门组题解

洛谷题目链接:最急救助观星买表

Problem   1: \texttt{Problem 1:} Problem 1最急救助

这题很简单,直接模拟即可。

复杂度: O ( N M ) O(NM) O(NM) (设字符串长度为 M M M

注意不要再循环里面通过 .size() 函数求长度,由于是 unsigned 类型,所以如果长度为 1 1 1 会溢出,而且还会增高复杂度,复杂度会变成 O ( N M 2 ) O(NM^2) O(NM2) (虽然这个复杂度也可以 AC \color{green}\texttt{AC} AC

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=110;
int n;
struct node
{
    string name,tmp;
    int sos_cnt;
}a[N];
int main()
{
//	freopen("save.in","r",stdin);
//	freopen("save.out","w",stdout);
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i].name;
        cin>>a[i].tmp;
        a[i].sos_cnt=0;
        int len_tmp=a[i].tmp.size();
        for(int i1=0;i1<len_tmp-2;i1++)
            if(a[i].tmp[i1]=='s' && a[i].tmp[i1+1]=='o' && a[i].tmp[i1+2]=='s')
                a[i].sos_cnt++;
    }
    int ans_cnt=0;
    for(int i=1;i<=n;i++)
        ans_cnt=max(ans_cnt,a[i].sos_cnt);
    for(int i=1;i<=n;i++)
    {
        if(a[i].sos_cnt==ans_cnt)
            cout<<a[i].name<<" ";
    }
    cout<<endl<<ans_cnt;
    return 0;
}

Problem   2: \texttt{Problem 2:} Problem 2观星

联通块基础题目,不会的请上网百度学习,一些联通块题目:Link

就是求联通块,然后用哈希数组 h 来进行哈希即可。

代码:

#include<bits/stdc++.h>
using namespace std;
const int dx[]={-1,-1,-1,0,1,1,1,0};
const int dy[]={-1,0,1,1,1,0,-1,-1};
const int N=1510;
int n,m,maxx_ans,cnt_ans,h[N*N];
char g[N][N];
bool st[N][N];
int BFS(int sx,int sy)
{
    int xx_cnt=1;
    queue<int> q1,q2;
    q1.push(sx),q2.push(sy);
    st[sx][sy]=true;
    while(!q1.empty())
    {
        int x=q1.front(),y=q2.front();
        q1.pop(),q2.pop();
        for(int i=0;i<8;i++)
        {
            int tx=x+dx[i],ty=y+dy[i];
            if(tx>=1 && tx<=n && ty>=1 && ty<=m && !st[tx][ty] && g[tx][ty]=='*')
            {
                q1.push(tx),q2.push(ty);
                xx_cnt++;
                st[tx][ty]=true;    
            }
        }
    }
    return xx_cnt;
}
int main()
{
//	freopen("star.in","r",stdin);
//	freopen("star.out","w",stdout);
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            cin>>g[i][j];
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            if(st[i][j] || g[i][j]!='*') continue;
            int tmp=BFS(i,j);
            h[tmp]++;
            maxx_ans=max(maxx_ans,h[tmp]*tmp);
            if(h[tmp]==1) cnt_ans++;
        }
    printf("%d %d",cnt_ans,maxx_ans);
    return 0;
}

时间复杂度: O ( n m ) O(nm) O(nm)


Problem   3:买表 \texttt{Problem 3:买表} Problem 3:买表

二进制优化多重背包&&单调队列优化模板题。

50 % 50\% 50% 的数据直接爆搜即可。

讲解咕着,网上都有(

此题解采用了 bitset \texttt{bitset} bitset 压位,使用 bitset \texttt{bitset} bitset 常数是 bool 数组的 1 w \\\dfrac{1}{w} w1

代码:

#include<bits/stdc++.h>
#define endline putchar('\n')
using namespace std;
bitset<500010> f;
int n,m;
inline void write(string str){for(int i=0;str[i];i++){putchar(str[i]);}}
int main()
{
//  freopen("watch.in","r",stdin);
//  freopen("watch.out","w",stdout);
    int a,b;
    scanf("%d%d",&n,&m);  
    f[0]=1;
    for(register int i=1;i<=n;i++)
    {
        scanf("%d%d",&a,&b);
        for(int k=1;b>=k;k=k<<1)
            f|=f<<k*a,b-=k;
        if(a*b) f|=f<<b*a;
    }
    for(register int i=1;i<=m;i++)
        scanf("%d",&a),write(f[a]?"Yes":"No"),endline;
	return 0;
}

轻度卡常即可AC,注意常数不要太大

单调队列解法:(咕)

总结:

这次比赛我考炸了(

第一二题都是sb题,全都AC了,第三题是模板题,但是我写挂了…

于是总分: 100 + 100 + 0 = 200 100+100+0=200 100+100+0=200 ,低分数进 25 % 25\% 25%

本来可以AK的啊。。。。。

TG组太难了,不会,就不写了(

这次总体难度都比前两次要简单很多,但是质量却也下滑不少,希望下次(但是估计没有 NOI   Online   4 \texttt{NOI Online 4} NOI Online 4 了 )质量能更高(

走过路过点个赞?

顺手写一下tg组第一题题解吧,后两题正解不太会 / k k /kk /kk

由于保证 0 ≤ A i 0\le A_i 0Ai,所以最优肯定是从 i i i 号倒到 i + 1 i+1 i+1 号, i + 1 i+1 i+1 倒到 i + 2 i+2 i+2 号,一直倒到 i + k i+k i+k 号。

很明显看出来就是求长度为 k + 1 k+1 k+1 的一段最大的的和。

直接前缀和即可,如果带修改就大力线段树(

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int n,k,a[N];
long long s[N];
int main()
{
//	freopen("kettle.in","r",stdin);
//	freopen("kettle.out","w",stdout);
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    for(int i=1;i<=n;i++)
        s[i]=s[i-1]+a[i];
    long long ans=-0x3f3f3f3f;
    for(int i=1;i+k<=n;i++)
        if(ans<(s[i+k]-s[i-1]))
            ans=s[i+k]-s[i-1];
    printf("%lld",ans);
    return 0;
}

时间复杂度 : O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值