一:算法分析
棋盘覆盖问题要求在2^k * 2^k 个方格组成的棋盘中,你给定任意一个特殊点,用一种方案实现对除该特殊点的棋盘实现全覆盖。
建立模型如图:
解决方案就是利用分治法,将方形棋盘分成4部分,如果该特殊点在某一部分,我们就去递归他,如果不在某一部分,我们假设一个点为特殊点,同样递归下去,知道全覆盖。
左上角的子棋盘(若不存在特殊方格):则将该子棋盘右下角的那个方格假设为特殊方格;
右上角的子棋盘(若不存在特殊方格):则将该子棋盘左下角的那个方格假设为特殊方格;
左下角的子棋盘(若不存在特殊方格):则将该子棋盘右上角的那个方格假设为特殊方格;
右下角的子棋盘(若不存在特殊方格):则将该子棋盘左上角的那个方格假设为特殊方格;
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
//tr表示棋盘左上角行号
//tc表示棋盘左上角列号
//dr表示特殊棋盘的行号
//dc表示特殊棋盘的列号
//size = 2^k
//棋盘的规格为2^k * 2^k
const int SIZE = 8;
static int tt = 1;
static int board[SIZE][SIZE];
void ChessBoard(int tr,int tc,int dr,int dc,int size)
{
if(size == 1)//棋盘只有一个方格且是特殊方格
return ;
int t = tt++; //L型骨牌号
int s = size>>1;//分割棋盘
//覆盖左上角子棋盘
if(dr<tr+s&&dc<tc+s)
ChessBoard(tr,tc,dr,dc,s); //特殊方格在此棋盘中
else
{
//此棋盘无特殊方格
//用t号L型骨牌覆盖右下角
board[tr+s-1][tc+s-1] = t;
//覆盖其余方格
ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
}
//覆盖右上角
if(dr<tr+s&&dc>=tc+s) //特殊方格在此棋盘中
ChessBoard(tr,tc+s,dr,dc,s);
else
{
//此子棋盘中无特殊方格
//用t号L型骨牌覆盖左下角
board[tr+s-1][tc+s] = t;
//覆盖其余方格
ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
}
//覆盖左下角子棋盘
if(dr >= tr + s && dc < tc + s)
{
//特殊方格在此棋盘中
ChessBoard(tr + s, tc, dr, dc, s);
}
else
{
//用t号L型骨牌覆盖右上角
board[tr + s][tc + s -1] = t;
//覆盖其余方格
ChessBoard(tr + s, tc, tr + s, tc + s - 1, s);
}
//覆盖右下角子棋盘
if(dr >= tr + s && dc >= tc + s)
{
//特殊方格在此棋盘中
ChessBoard(tr + s, tc + s, dr, dc, s);
}
else
{
//用t号L型骨牌覆盖左上角
board[tr + s][tc + s] = t;
//覆盖其余方格
ChessBoard(tr + s, tc + s, tr + s, tc + s, s);
}
}
void ChessPrint()
{
for(int i = 0; i < SIZE; i++)
{
for(int j = 0; j < SIZE; j++)
{
cout.width(3);
cout<<board[i][j]<<" ";
}
cout<<endl;
}
}
int main()
{
int x,y;
cin>>x>>y;
ChessBoard(0,0,x,y,SIZE);
ChessPrint();
return 0;
}