算法设计与分析之分治法——棋盘覆盖

一:算法分析

棋盘覆盖问题要求在2^k * 2^k 个方格组成的棋盘中,你给定任意一个特殊点,用一种方案实现对除该特殊点的棋盘实现全覆盖。

建立模型如图:

解决方案就是利用分治法,将方形棋盘分成4部分,如果该特殊点在某一部分,我们就去递归他,如果不在某一部分,我们假设一个点为特殊点,同样递归下去,知道全覆盖。

    左上角的子棋盘(若不存在特殊方格):则将该子棋盘右下角的那个方格假设为特殊方格;

    右上角的子棋盘(若不存在特殊方格):则将该子棋盘左下角的那个方格假设为特殊方格;

    左下角的子棋盘(若不存在特殊方格):则将该子棋盘右上角的那个方格假设为特殊方格;

    右下角的子棋盘(若不存在特殊方格):则将该子棋盘左上角的那个方格假设为特殊方格;

#include <iostream>
#include <cstring>
#include <cstdio>

using namespace std;
//tr表示棋盘左上角行号
//tc表示棋盘左上角列号
//dr表示特殊棋盘的行号
//dc表示特殊棋盘的列号
//size = 2^k
//棋盘的规格为2^k * 2^k
const int SIZE = 8;
static int tt = 1;
static int board[SIZE][SIZE];
void ChessBoard(int tr,int tc,int dr,int dc,int size)
{
    if(size == 1)//棋盘只有一个方格且是特殊方格
        return ;
    int t = tt++; //L型骨牌号
    int s = size>>1;//分割棋盘
     //覆盖左上角子棋盘
    if(dr<tr+s&&dc<tc+s)
        ChessBoard(tr,tc,dr,dc,s); //特殊方格在此棋盘中
    else
    {
         //此棋盘无特殊方格
         //用t号L型骨牌覆盖右下角
        board[tr+s-1][tc+s-1] = t;
        //覆盖其余方格
        ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
    }
    //覆盖右上角
    if(dr<tr+s&&dc>=tc+s) //特殊方格在此棋盘中
        ChessBoard(tr,tc+s,dr,dc,s);
    else
    {
         //此子棋盘中无特殊方格
         //用t号L型骨牌覆盖左下角
        board[tr+s-1][tc+s] = t;
         //覆盖其余方格
        ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
    }
    //覆盖左下角子棋盘
     if(dr >= tr + s && dc < tc + s)
     {
         //特殊方格在此棋盘中
         ChessBoard(tr + s, tc, dr, dc, s);
     }
     else
     {
         //用t号L型骨牌覆盖右上角
         board[tr + s][tc + s -1] = t;
         //覆盖其余方格
         ChessBoard(tr + s, tc, tr + s, tc + s - 1, s);
     }

     //覆盖右下角子棋盘
     if(dr >= tr + s && dc >= tc + s)
     {
         //特殊方格在此棋盘中
         ChessBoard(tr + s, tc + s, dr, dc, s);
     }
     else
     {
         //用t号L型骨牌覆盖左上角
         board[tr + s][tc + s] = t;
         //覆盖其余方格
         ChessBoard(tr + s, tc + s, tr + s, tc + s, s);
     }
}
void ChessPrint()
{
    for(int i = 0; i < SIZE; i++)
    {
        for(int j = 0; j < SIZE; j++)
        {
            cout.width(3);
            cout<<board[i][j]<<" ";
        }
       cout<<endl;
    }
}
int main()
{
    int x,y;
    cin>>x>>y;
    ChessBoard(0,0,x,y,SIZE);
    ChessPrint();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Usher_Ou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值