《GESP5级2309 单选题判断题》 解析(附加编程题)

温馨提醒,以下解析为个人观点,还是得请大佬多多指教(可以喷,但不能说我是复制粘贴!)

一、单选题(每题2分,共30分)

1、近年来,线上授课变得普遍,很多有助于改善教学效果的设备也逐渐流行,其中包括⽐较常用的手写板,那么它属于哪类设备?( )。

A.输入

B.输出

C.控制

D.记录

这是一道定义判断的问题。首先,我们需要理解题目中提到的“手写板”及其在教学中的使用场景,再逐个分析选项,根据问题中描述的设备特性和功能来确定其所属类别。

理解背景信息:手写板在线上授课中常被用作输入工具,教师可以利用它在屏幕上书写或绘图,以便更直观地展示教学内容。

理解问题核心:我们需要判断手写板属于哪类设备。

接下来,我们逐一分析选项:

A选项(输入设备):
手写板允许用户通过书写或绘图的方式输入信息到计算机中,这符合输入设备的定义。在在线教学中,教师使用手写板输入教学内容,因此这个选项是合理的。

B选项(输出设备):
输出设备主要用于展示信息,如显示器、打印机等。手写板并不用于展示信息,而是用于输入,因此这个选项不适用。

C选项(控制设备):
控制设备主要用于控制和操作其他设备,如键盘、鼠标等。手写板主要用于输入内容,而非控制其他设备,因此这个选项不适用。

D选项(记录设备):
记录设备主要用于记录信息,如录音机、摄像机等。手写板虽然可以记录书写内容,但其主要功能是输入,而非专门的记录设备,因此这个选项也不适用。

综上所述,手写板在线上授课中主要作为输入工具使用,教师可以通过它输入书写或绘图内容到计算机中。因此,答案是A.输入设备。

2、如果a和b均为int类型的变量,且b的值不为0,那么下列能正确判断“a是b的3倍”的表达式是( )。

A. (a >> 3 == b)

B. (a - b) % 3 == 0

C. (a  / b  == 3)

D. (a ==  3  * b)

这是一道关于整数运算和条件判断的问题。我们需要分析每个选项,确定哪一个能正确判断“a是b的3倍”。

‌选项A‌: (a >> 3 == b)

这个表达式将a右移3位,然后判断是否与b相等。右移3位相当于将a除以8(2的3次方),而不是3,因此这个选项不正确。

‌选项B‌: (a - b) % 3 == 0

这个表达式判断a减去b的余数是否为0,这并不能证明a是b的3倍。例如,当a=7,b=4时,(a - b) % 3 == 0成立,但a不是b的3倍。因此,这个选项也不正确。

‌选项C‌: (a / b == 3)

这个表达式判断a除以b的结果是否为3。在整数除法中,如果a确实是b的3倍,这个条件将成立。但是,如果a和b的符号不同(例如,a是正数,b是负数),即使a的绝对值是b的绝对值的3倍,这个表达式也会因为整数除法的结果可能为负数而不成立。因此,这个选项在特定情况下可能不正确。

‌选项D‌: (a == 3 * b)

这个表达式直接判断a是否等于b的3倍。无论a和b的符号如何,只要a确实是b的3倍,这个条件就会成立。因此,这是正确的判断方法。

综上所述,能正确判断“a是b的3倍”的表达式是选项D:(a == 3 * b)。

3、如果变量 a 和 b 分别为 double 类型和 int 类型,则表达式(a = 6,b = 3 * (7 + 8) / 2,b += a) 的计算结果为( )。

A.6

B.21

C.28

D.不确定

这是一道关于表达式求值的问题。首先,我们需要理解表达式中的各个部分,并按照运算的优先级进行计算。

‌分析表达式‌:

表达式为 (a = 6,b = 3 * (7 + 8) / 2,b += a)。
这是一个逗号表达式,包含三个子表达式,从左到右依次计算。

‌计算子表达式‌:

第一个子表达式 a = 6:将变量 a 的值设置为 6。
第二个子表达式 b = 3 * (7 + 8) / 2:
首先计算括号内的 7 + 8,得到 15。
然后计算 3 * 15,得到 45。
最后计算 45 / 2,得到 22.5。但由于 b 是 int 类型,所以结果会被截断为 22。
第三个子表达式 b += a:
将 b 的值(22)与 a 的值(6)相加,得到 28。

‌确定最终结果‌:

逗号表达式的值是最后一个子表达式的值,即 b += a 的结果,为 28。

‌匹配选项‌:

A. 6:不正确,这是 a 的初始值。
B. 21:不正确,这不是任何中间或最终的计算结果。
C. 28:正确,这是最终的计算结果。
D. 不确定:不正确,因为我们可以确定最终的计算结果。

因此,正确答案是 C. 28。

4、有关下⾯C++代码说法错误的是( )。

A.sumA() ⽤循环⽅式求从1到N之和,sumB()⽤递归⽅式求从1到N之和。

B.默认情况下,如果输⼊正整数1000,能实现求从1到1000之和。

C.默认情况下,如果输⼊正整数100000,能实现求从1到100000之和。

D.一般说来,sumA()的效率⾼于sumB()。

这是一道关于C++代码理解和分析的问题。首先,我们来分析题目中的代码和选项。

1. 逐项分析:

‌A选项‌:

sumA() 使用循环方式求从1到N之和,sumB() 使用递归方式求从1到N之和。这个描述是准确的。

‌B选项‌:

默认情况下,如果输入正整数1000,能实现求从1到1000之和。这个描述也是准确的,因为代码中的sumA()和sumB()函数都能正确处理这个范围的输入。

‌C选项‌:

默认情况下,如果输入正整数100000,能实现求从1到100000之和。这个描述可能不准确。对于sumB()函数,使用递归方式计算这么大的数可能会导致栈溢出错误,因为每次递归调用都会消耗一定的栈空间。

‌D选项‌:

一般说来,sumA()的效率高于sumB()。这个描述是准确的,因为循环通常比递归更高效,特别是在处理大量数据时。
2. 总结答案:
‌错误的说法是C选项‌。默认情况下,如果输入正整数100000,使用sumB()函数(递归方式)可能无法实现求从1到100000之和,因为递归深度过大可能导致栈溢出。

因此,答案是C。

5、下⾯C++代码以递归⽅式实现字符串反序,横线处应填上代码是( )。

A. sIn[sIn.length()  -  1]  +  sReverse(sIn.substr(0,  sIn.length()  - 1));

B. sIn[0] + sReverse(sIn.substr(1, sIn.length() - 1));

C. sReverse(sIn.substr(0, sIn.length() - 1)) + sIn[sIn.length() - 1];

D. sReverse(sIn.substr(1, sIn.length() - 1)) + sIn[sIn.length() - 1];

这是一道关于字符串递归反序的问题。我们首先需要理解题目中的递归逻辑,然后仔细分析每个选项,找出符合递归反序逻辑的代码。

‌理解递归逻辑‌:

递归的基本情况是字符串长度小于等于1,此时直接返回字符串本身。
递归的一般情况是字符串长度大于1,此时需要将字符串的最后一个字符移到字符串的开头,并对剩余的字符串部分进行递归反序。

‌分析选项‌:

A. sIn[sIn.length() - 1] + sReverse(sIn.substr(0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值