machine learning
Raecing
这个作者很懒,什么都没留下…
展开
-
Andrew Ng的机器学习视频目录(from coursera, 2014)
第一周:简介机器学习,有监督学习,无监督学习。 1-1,1-2,1-3,1-4第二周:2-1:回归问题举例 2-2:介绍cost function定义。 2-3:在回归函数是一个经过原点的直线的情况下,演绎cost function最小化的计算。 2-4:在回归函数是一条直线时,通过等高线演绎cost function最小化的计算。 2-5:简介梯度原创 2015-08-21 23:05:56 · 1428 阅读 · 0 评论 -
【机器学习实战】-k近邻算法
1、爱情&动作片分类:from numpy import *import operatordef createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels = ['A','A','B','B'] return group, labelsdef classify0(inX, dataS原创 2015-07-04 23:20:43 · 402 阅读 · 0 评论 -
【机器学习实战】Logistic回归例程调试(1)
1.在Python Shell下调用open函数打开txt文件的文件路径写法:f=open("d:/tmp.txt")或f=open("d://tmp.txt")或f=open("d:\\tmp.txt")包含中文的路径:srcfile = r"D:/测试路径/测试文件.txt"f = open(srcfile.decode('utf8').encode('gbk'))注意路径是用'/原创 2015-08-27 15:34:05 · 1436 阅读 · 0 评论 -
【机器学习实战】logistics回归例程调试(2)
调试环境:shell>>> for line in fr.readlines():line.strip().split()print line结果:>>> line'0.317029\t14.739025\t0\n'这是最后一行line中两个特征值加一个类值原创 2015-08-28 16:06:42 · 691 阅读 · 0 评论 -
【机器学习】网上各种入门方法&路线收集
1)采集自知乎:机器学习说简单就简单,说难就难,但如果一个人不够聪明的话,他大概很难知道机器学习哪里难。基本上要学习机器学习,先修课程是algebra, calculus, probability theory, linear regression。这几门科学好了再学Machine learning是事半功倍的。此外近代数学的东西也要懂, functional analysis啥的。其实不懂也行,只原创 2015-08-28 22:40:35 · 1133 阅读 · 0 评论 -
机器学习入门者学习指南(经验分享)
本人计算机研二,专业方向自然语言处理,个人对于机器学习挺感兴趣,于是开始学习。所以,原来这家伙是个菜鸟……正是由于自己是个菜鸟,所以体会到自学机器学习的艰辛,于是在这里分享一下个人的经验,希望能对入门者有所帮助。 一些有关机器学习的介绍在这里就不做详细介绍了,感兴趣的同学可以去维基百科。就直接进入正题。 1、去Coursera上Andrew Ng的《机器学习》,完成所有作业,最好能全部拿满分。这转载 2015-08-21 10:54:47 · 1010 阅读 · 0 评论 -
bpnn——matlab工具箱-归一化函数 premnmx、tramnmx、postmnmx、mapminmax
source1person1:“一个是训练数据归一化,此时不知道输入数据范围,一个是对预测数据归一化,此时用的最大最小是训练数据的最大最小,配套的还有个反归一化函数,如果数据在01间不需要,归一化的目的是防止输入数据各维间数量级差别太大”person2 “premnmx可以在任何时候用,但tramnmx是要先用了premnmx后才可以用,主要是用于归一化神经网络的输入,其中要用到premnm原创 2015-11-26 20:15:59 · 17087 阅读 · 0 评论 -
bpnn——MATLAB工具箱--newff
newffnewff Create a feed-forward backpropagation network.Obsoleted in R2010b NNET 7.0. Last used in R2010a NNET 6.0.4. The recommended function is feedforwardnet.Syntax net = newff(P,T,S) net = n原创 2015-11-26 21:44:23 · 5653 阅读 · 1 评论 -
维数灾难(from wiji)
维数灾难(英语:curse of dimensionality,又名维度的詛咒)是一个最早由理查德·贝尔曼(Richard E. Bellman)在考虑优化问题时首次提出来的术语[1][2],用来描述当(数学)空间维度增加时,分析和组织高高维空间(通常有成百上千维),因体积指数增加而遇到各种问题场景。这样的难题在低维空间中不会遇到,如物理空间通常只用三维来建模。举例来说,100个平均分布的转载 2015-12-16 14:47:20 · 1202 阅读 · 0 评论