复分析与微分几何

复变函数的研究从Euler开始就有了萌芽,但是真正使其成为一门成熟学科的却是Cauchy,他用的是积分方式研究复函数性质。Weierstrass 也系统研究了复变函数,但是用的是级数方法,而Riemann研究复变函数的方法是几何的方法。后人发现Weierstrass的方法其实可以从 Cauchy和Riemann的方式导出。Cauchy-Riemann方程是用来判断复函数全纯(解析)的核心。
尽管Riemann把Gauss的内蕴曲面的微分几何研究推广到高维流形,但是他并没有将Gauss的这个强有力方法推广到复曲线(赋予复结构的实曲面),因为他当时关心的是复平面(复直线),复平面当然用不着曲面论了。Riemann给出了著名的Riemann映射定理,这是复变函数几何方面的核心定理。
为了解决多值函数问题,1851年,Riemann在自己的博士论文中提出了著名的Riemann曲面理论,这篇论文博得了一向吝于赞人的Gauss的极大赞赏,看来这老狐狸真的极有眼光(注:Abel曾经把Gauss研究数学的风格形容为一只狡猾的狐狸总是把自己在雪地上的脚印用尾巴扫平。) Riemann面从复分析观点看,是1维复流形,而我们知道复流形在纯数学和理论物理中的作用有多么巨大,而且正是Weyl在1913年对于 Riemann面的深刻论述导致了流形的第一个严格定义——局部欧式的Hausdorff空间。而复流形则加上一个复结构就可以了。
无论是实流形还是复流形,没有度规都无法进行更细致的研究。Riemann在1854年第一次提出“流形”的粗糙概念时,是直接开始赋予度规即 Riemann度规,相应的流形称为Riemann流形。Einstein研究广义相对论时对时空赋予的度规是Lorentz度规,相应的时空流形称为 Lorentz流形。但是对于复流形,直到Ahlfors在1938年时通过推广复分析中经典的Schwarz引理时才开始把微分几何引入复分析,他在单位圆盘上定义了Poincare度规(双曲度规)后不仅给出了Schwarz引理的几何图景,而且把Schwarz引理推广为Ahlfors- Schwarz引理。
经典的Schwarz引理引理说:若f(z)为单位圆上的全纯自同构映射,且f(0)=0,f(z)的模小于或等于z的模,且f的导数在z=0时小于或等于1。如果我们用微分几何观点分析,在单位圆上取Poincare度规,那么就是说,单位圆上的全纯自同构保持度规不增加,当且仅当这个自同构为旋转时,映射前后的度规相等。由Schwarz引理可知,单位圆的全纯自同构群由Mobius变换和旋转复合而成。
另外,我们可以计算出,单位圆取定Poincare度规时,曲率为 -1,因此它自然成为“常负曲率曲面”的代表,并且理所当然是双曲几何的最佳模型。而Ahlfors则考虑单位圆到区域U的映射,他将U的度规取到可以令 U的曲率的上界为-1(即小于或者等于-1),证明单位圆到U到映射,使度规不增加,这就是著名的Ahlfors-Schwarz引理。如果此时的U就是单位圆,那么这个定理就退化为Schwarz引理。
为了将一维复流形推广到高维复流形,我们要将Cauchy-Riemann方程组写成复形式,将复函数表示复变量z及其共轭复数的函数zbar, Cauchy-Riemann方程写成复形式就是这个函数对于zbar的偏导数为0。如果我们取多个变量z_1, z_2,…… z_n, z_1bar, z_2bar,…… z_nbar,那么我们就进入多复变函数的研究,此时的Cauchy-Riemann方程组就是对所有n,f对z_nbar的偏导数全为0,此时的函数就是全纯函数。取定2n维流形上的开覆盖{U_a},如果U_a存在到n维复欧式空间的同胚且{U_a}中任意的两个坐标卡的公共部分都可建立全纯变换,我们就说这个实 2n维流形是n维复流形。
著名的Kahler流形是特殊的复流形。对于Kahler流形,不仅有截面曲率,还有全纯截面曲率,且二者不是一个概念,全纯截面曲率为常数并不意味着截面曲率为常数。微分几何中经典的Schur定理说:如果Riemann截面曲率在流形的每点都与方面无关,那么所有点的Riemann截面曲率相等(也就是常截面曲率流形),在Kahler空间里,把上面定理中的Riemann截面曲率换成“全纯截面曲率”,结论依然成立。
如果Kahler流形的全纯截面曲率为常数(记住,此时的截面曲率未必为常数),那么其Ricci曲率就为常数,这样就有了了著名的Kahler-Einstein流形,复欧式空间、复射影空间、复环面、复双曲空间都是Kahler-Einstein流形。
如果Kahler-Einstein流形的Ricci曲率为零,就是著名的Calabi-Yau流形(Ricci平坦流形)。当然,现在的代数几何不必通过这个途径来定义Calabi-Yau流形。但是我们通过这种方式来认识Calabi-Yau流形是比较直观的。弦论中n=3的Calabi-Yau流形很重要,n=2 Calabi-Yau流形(K3曲面)的也很重要
作者: 龚昇 出版社: 中国科学技术大学出版社 副标题: 第2版 出版年: 2009-5 页数: 159 定价: 20.00元 丛书: 中国科学技术大学精品教材 ISBN: 9787312021695 内容简介 · · · · · · 《简明复分析》较系统地讲述了复变函数论的基本理论和方法。全书共分6章,内容包括:微积分,Cauchy积分定理与Cauchy积分公式,Weierstrass级数理论,Riemann映射定理,微分几何与Picard定理,多复变数函数浅引等。每章配有适量习题,供读者选用。《简明复分析(中国科学技术大学精品教材)》试图用近代数学的观点和方法处理复变函数内容,并强调数学的统一性。例如,用微分几何的初步知识,对Picard大、小定理给出简洁的证明;强调变换群的概念,利用Pompeiu公式给出一维a-问题的解,并用此来证明Mittag-Leffler定理与插值定理等,利用简单区域上的全纯自同构群证明Poincare定理;对多复变数函数做了简明的介绍。 目录 · · · · · · 编审委员会 总序 第 2 版前言 重印说明 前言 目录 第 1 章 微积分 1 1.1 回顾微积分 1 1.2 复数域、扩充复平面及其球面表示 6 1.3 复微分 9 1.4 复积分 15 1.5 复数级数 17 1.6 初等函数 21 习题 1 26 第 2 章 Cauchy 积分定理与 Cauchy 积分公式 33 2.1 Cauchy-Green 公式(Pompeiu 公式) 33 2.2 Cauchy-Goursat 定理 39 2.3 Taylor 级数与 Liouville 定理 44 2.4 有关零点的一些结果 50 2.5 最大模原理、Schwarz 引理与全纯自同构群 54 2.6 全纯函数的积分表示 59 习题 2 63 附录 单位分解定理 69 第 3 章 Weierstrass 级数理论 72 3.1 Laurent 级数 72 3.2 孤立奇点 76 3.3 整函数与亚纯函数 79 3.4 Weierstrass 因子分解定理、Mittag-Leffler 定理与插值定理 82 3.5 留数定理 90 3.6 解析开拓 98 习题 3 101 第 4 章 Riemann 映射定理 105 4.1 共形映射 105 4.2 正规族 109 4.3 Riemann 映射定理 112 4.4 对称原理 114 4.5 Riemann 曲面举例 116 4.6 Schwarz-Christoffel 公式 117 习题 4 120 附录 Riemann 曲面 122 第 5 章 微分几何与Picard定理 124 5.1 度量与曲率 124 5.2 Ahlfors-Schwarz 引理 129 5.3 Liouville 定理的推广及值分布 131 5.4 Picard 小定理 132 5.5 正规族的推广 134 5.6 Picard 大定理 137 习题 5 139 附录 曲率 140 第 6 章 多复变数函数浅引 144 6.1 引言 144 6.2 Cartan 定理 146 6.3 单位球及双圆柱上的全纯自同构群 148 6.4 Poincaré 定理 152 6.5 Hartogs 定理 153 参考文献 157 丛书信息   中国科学技术大学精品教材 (共46册), 这套丛书还有 《微积分学导论(上册)》,《近代物理学》,《中国古代科学思想二十讲》,《微积分学导论》,《地震学原理与应用》 等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值