利用机器学习算法构建孟加拉国自杀企图的高效预测模型
1. 引言
自杀企图指的是那些未成功结束自己生命的行为。尽管心理健康专家不鼓励使用“失败”或“未成功”这样的表述,因为它们暗示自杀导致的死亡是一种友好且乐观的结局,但在一定程度上使用这些词汇也是被允许的。自杀行为包括经常考虑结束自己生命(自杀意念)、制定结束生命的计划(自杀计划)或尝试结束自己生命(自杀企图),而自杀则是实际结束自己生命的行为。自杀行为通常伴随着极度悲伤、自我毁灭行为或极度绝望等。
自杀已成为一个全球性的公共卫生问题,每年约有80万人因此丧生,其中79%发生在像孟加拉国这样的中低收入国家。自杀是仅次于意外事故导致的非故意伤害死亡的第二大死因,尤其对15 - 29岁的人群(其中很多可能是学生)影响较大。
孟加拉国的公共卫生项目尚未重点关注自杀问题。本文的信息将有助于识别孟加拉国未被研究的自杀热点地区,为未来的研究方向指明道路,这些研究对于制定相关的本地自杀预防政策、策略和干预措施具有重要意义。目前,自杀研究人员通过案例研究、新闻或媒体报道分析、尸检记录审查、死亡登记审查以及伤害死亡记录评估等方式获取信息。截至2022年,S. M. Y. Arafat撰写了关于孟加拉国自杀问题的最多论文。此外,孟加拉国没有全国性的自杀数据记录系统,迫切需要自杀预防项目。
个体自杀企图的预测是一项具有挑战性的任务,需要全面了解每个人的独特情况、心理健康状态和社会支持网络。需要注意的是,自杀是一个重大的公共卫生问题,有许多风险因素可能增加自杀企图的可能性,这些因素包括严重的精神疾病、既往自杀企图、物质成瘾、社会排斥、致命工具的可获取性、家族自杀史和苛刻的生活环境等。