1、确定存储一个大小为 4000×3000 像素的未压缩二值图像所需的字节数。
二值图像每个像素通常用 1 位(bit)编码,该图像像素总数为 4000×3000 = 12000000 像素,总位数为 12000000 位。
因为 1 字节(Byte) = 8 位(bit) ,所以所需字节数为 12000000 ÷ 8 = 1500000 字节。
2、确定使用每个颜色通道8、10、12和14位来存储大小为640×480像素的未压缩RGB彩色图像所需的字节数。
每个像素有3个颜色通道(RGB),1字节等于8位。
- 对于8位/通道:
- 每个像素需要 3 × 8 = 24 位,即 3 字节。
-
640 × 480 像素的图像需要 3 × 640 × 480 = 921600 字节。
-
对于10位/通道:
- 每个像素需要 3 × 10 = 30 位,即 30 ÷ 8 = 3.75 字节。
-
图像需要 3.75 × 640 × 480 = 1152000 字节。
-
对于12位/通道:
- 每个像素需要 3 × 12 = 36 位,即 36 ÷ 8 = 4.5 字节。
-
图像需要 4.5 × 640 × 480 = 1382400 字节。
-
对于14位/通道:
- 每个像素需要 3 × 14 = 42 位,即 42 ÷ 8 = 5.25 字节。
- 图像需要 5.25 × 640 × 480 = 1612800 字节。
3、在你的计算机上安装 ImageJ 的当前版本,并熟悉其内置命令(打开、转换、编辑和保存图像)。
这是一个操作任务,需要你在计算机上安装 ImageJ 当前版本,然后使用其主窗口的菜单进行操作以熟悉内置命令。例如:
- 通过“File”菜单打开、保存和创建新图像;
- 使用“Image”菜单进行图像的修改和转换;
- 用“Edit”菜单编辑和绘制图像等。
4、编写一个新的ImageJ插件,用于水平(或垂直)翻转灰度图像。使用不同大小(奇数、偶数、极小)的合适图像测试这个新插件,并仔细检查结果。
以下是基于 My_Inverter.java 模板编写的水平翻转灰度图像的插件代码:
import ij.ImagePlus;
import ij.plugin.filter.PlugInFilter;
import ij.process.ImageProcessor;
public class My_HorizontalReflector implements PlugInFilter {
public int setup(String args, ImagePlus im) {
return DOES_8G; // 此插件接受8位灰度图像
}
public void run(ImageProcessor ip) {
int M = ip.getWidth();
int N = ip.getHeight();
// 迭代所有图像坐标 (u,v)
for (int v = 0; v < N; v++) {
for (int u = 0; u < M / 2; u++) {
int p1 = ip.getPixel(u, v);
int p2 = ip.getPixel(M - 1 - u, v);
ip.putPixel(u, v, p2);
ip.putPixel(M - 1 - u, v, p1);
}
}
}
}
若要实现垂直翻转,可将代码中的嵌套循环修改为以下形式:
for (int u = 0; u < M; u++) {
for (int v = 0; v < N / 2; v++) {
int p1 = ip.getPixel(u, v);
int p2 = ip.getPixel(u, N - 1 - v);
ip.putPixel(u, v, p2);
ip.putPixel(u, N - 1 - v, p1);
}
}
编写好插件后,可使用不同大小(奇数、偶数、极小)的灰度图像进行测试,以确保其正确性。
5、开发一个 ImageJ 插件,使用 Java 方法 Math.random() 或 Random.nextInt(int n) 创建一个像素值在 [0, 255] 范围内均匀分布的图像。分析该图像的直方图,以确定像素值的实际分布均匀程度。
以下是实现该功能的 ImageJ 插件示例代码:
import ij.ImagePlus;
import ij.ImageProcessor;
import ij.plugin.filter.PlugInFilter;
import java.util.Random;
public class Random_Image_Histogram implements Plug

最低0.47元/天 解锁文章
1863

被折叠的 条评论
为什么被折叠?



