34、C 语言特性与标准解析

C 语言特性与标准解析

在编程领域,C 语言一直占据着重要的地位。随着时间的推移,C 语言也在不断发展和完善,引入了许多新的特性和遵循了一些重要的标准。下面将详细介绍 C 语言的一些新特性、相关标准以及部分练习题的解答。

一、C 语言新特性
(一)基础特性
  1. 一元运算符 :新增了一元 + 运算符。
  2. sizeof 运算符 sizeof 现在返回 size_t 类型,而不是 unsigned int 类型。
  3. 取地址运算符 &
    • 可以对数组使用 & 运算符。
    • 不能对声明为 register 的对象使用 & 运算符。
(二)字符串相关特性
  1. 转义序列 \x 转义序列列表得到扩展并得到更好的定义。
  2. 相邻字符串字面量 :相邻的字符串字面量会被连接起来。
  3. 字符串常量 :字符串常量可
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值