POJ-3352(无向图边双连通部分)

本文介绍了如何解决POJ-3352问题,涉及无向图的双连通分量算法。首先找出图中的桥,然后进行缩点操作,将桥的两侧合并。接着重建为一棵树,并计算叶子节点的数量,通过添加特定数量的边将树转化为双连通。
摘要由CSDN通过智能技术生成

题目:http://poj.org/problem?id=3352

花了好久才搞明白双连通分量的算法,真是太弱了:无向图边双连通分量是没有公共点的,可以先找出所有的桥,桥的两边肯定属于两个连通分量,虽然不定以双连通分量,即桥的两边缩点后,桥即为树边

本题步骤:

(1)找出图中的桥

(2)将桥两边的部分缩成同一个点,即拥有相同的dfn

(3)将缩点后的图重建为一棵树

(4)找出树中叶子的个数,也即度为1的点的个数,设为N,则我们可以添加(N+1)/2个边将这棵树变为双连通


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define MAX_VERTEX  1001
#define MAX_EDGE    1001

int N, M;
int uu[MAX_EDGE], vv[M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值