深度学习
文章平均质量分 94
cyber_security
记录一位网络安全博士的成长历程。关注代码审计、渗透测试、追踪溯源、APT检测、ai安全等网络空间安全内容,以及关注新时代的新产物包括web3、区块链等。
展开
-
2024.01.13 过拟合解决方案之暂退法(dropout)
在本情况中,所有元素都被丢弃# 在本情况中,所有元素都被保留return X我们可以将暂退法应用于每个隐藏层的输出(在激活函数之后), 并且可以为每一层分别设置暂退概率: 常见的技巧是在靠近输入层的地方设置较低的暂退概率。下面的模型将第一个和第二个隐藏层的暂退概率分别设置为0.2和0.5, 并且暂退法只在训练期间有效。# 只有在训练模型时才使用dropout# 在第一个全连接层之后添加一个dropout层# 在第二个全连接层之后添加一个dropout层return out。原创 2024-01-13 23:08:54 · 484 阅读 · 1 评论 -
2024.01.09 softmax回归
return X_exp / partition # 这里应用了广播机制分类模型常用交叉熵损失lr = 0.1"""小批量随机梯度下降""""""计算预测正确的数量""""""在n个变量上累加""""""计算在指定数据集上模型的精度"""net.eval() # 将模型设置为评估模式metric = Accumulator(2) # 正确预测数、预测总数"""训练模型一个迭代周期(定义见第3章)"""# 将模型设置为训练模式# 训练损失总和、训练准确度总和、样本数。原创 2024-01-09 23:51:53 · 1022 阅读 · 1 评论