40、量子密钥分发:原理、挑战与未来

量子密钥分发:原理、挑战与未来

1. 认证的重要性与方式

量子密钥分发(QKD)中,认证至关重要,否则易遭受中间人攻击。主要有三种认证方式:
- 对称密钥认证 :若双方已共享短私钥,可使用无条件安全的消息认证码对消息进行认证。Wegman和Carter最早提出相关方法,后在QKD中得以完善。QKD有时也被称为量子密钥扩展,因为它能将短共享密钥扩展为信息论安全的长共享密钥。而且,QKD的通用可组合性意味着能用其生成的部分密钥对下一轮QKD消息进行认证,安全性损失可忽略不计。所以,只需一个相对较短(几千字节)的认证密钥,就能持续进行QKD。
- 公钥认证 :虽对称密钥认证能提供无条件安全认证,但部署困难,因为通信双方需共享私钥。公钥基础设施实现了分布式信任,对电子商务的成功至关重要。尽管很多量子密码学倡导者忽视公钥认证在QKD中的作用,但公钥认证在QKD基础设施中仍至关重要,能提供有意义的安全保障。不过,公钥认证方案存在被破解的风险,如RSA - 129问题在最初被认为需40千万亿年才能解决,实际17年后就被破解。虽然大规模量子计算机目前尚未出现,但未来可能会对现有公钥方案构成威胁。不过,也有“后量子”方案不会立即被量子算法破解,且未来可能会有更多新方案出现。公钥方案可能会经历一个生命周期,新方案提出后,起初看似安全,随着计算技术和密码分析的发展,安全性逐渐降低,直到新方案出现。在公钥认证方案仅在20年内被认为安全的情况下,QKD能发挥优势。公钥认证基础设施提供了大规模可用性,与QKD结合可提供强大的安全保障。在QKD中,公钥认证只需在初始连接时保持安全,后续QKD生成的密钥将永远安全。与经典公钥交换方案不同,QKD的新会话密钥

内容概要:本文详细介绍了一个基于Java和Vue的迁移学习少样本图像分类系统的设计实现,涵盖项目背景、目标、技术架构、核心算法、前后端代码实现、数据库设计、部署方案及应用领域。系统通过融合迁移学习少样本学习技术,解决实际场景中样本稀缺、标注成本高、模型泛化能力差等问题,支持数据增强、预训练模型微调、原型网络(ProtoNet)等算法,并实现前后端分离、模块化设计、可视化监控自动化工作流。项目提供完整的代码示例、API接口规范、数据库表结构及GUI界面,具备高扩展性、安全性和易用性,适用于医疗、工业、农业等多个领域。; 适合人群:具备一定Java、Vue和深度学习基础的研发人员、AI算法工程师、计算机相关专业学生及从事智能图像分析的科研人员。; 使用场景及目标:①在样本极少的场景下实现高精度图像分类,如医疗影像、工业缺陷检测;②构建可扩展、可视化的AI训练推理平台;③学习如何将Python深度学习模型Java后端集成,掌握前后端分离的AI系统开发流程;④了解迁移学习、少样本学习在实际工程中的落地方法。; 阅读建议:建议结合文档中的代码示例流程图,搭建本地开发环境进行实践,重点关注前后端交互逻辑、Python模型服务调用机制及数据库设计,同时可基于项目结构扩展联邦学习、多模态融合等高级功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值