数据挖掘与智能体技术:富有成效的共生关系
在当今数字化时代,数据量呈爆炸式增长,用户对知识的需求也日益增加。数据挖掘(DM)和智能体技术(AT)作为两种重要的技术手段,在知识发现和智能系统开发中发挥着关键作用。本文将深入探讨这两种技术的基本概念、集成方式以及如何通过一种统一的方法来设计和评估基于数据挖掘的多智能体系统(MAS)。
1. 引言
随着每天大量数据的产生和在线获取,用户对知识的需求愈发迫切。传统的确定性计算技术已无法满足从大规模、分布式数据仓库中提取知识的需求,因此各种软计算技术应运而生,其中数据挖掘被认为是最先进的范例之一。它能够从大量数据中发现有用的模式和关联,为应用程序提供知识支持。
然而,数据挖掘所发现的知识需要以一种统一的方式进行整合和呈现给最终用户,并且需要将这些知识融入到自主软件中以提高性能。智能体技术在这方面展现出了巨大的潜力,它可以用于建模和实现数据挖掘任务的统一化,以及提供能够动态整合和使用现有知识的自主实体模型。
尽管已经有许多与智能体开发相关的方法,但目前缺乏通用的评估方法来评估基于数据挖掘的多智能体系统。现有的评估方法要么侧重于数据挖掘算法的性能,要么关注整个系统的性能,但都无法很好地应对智能体技术和数据挖掘集成所带来的复杂和动态特性。因此,本文提出了一种集成的软件工程方法,用于开发基于数据挖掘的多智能体系统,并提供了一种通用的评估方法。
2. 智能体技术与数据挖掘
2.1 智能体
“软件智能体”这一术语自人工智能早期就已出现,用于表示任何具有智能行为的软件模块。然而,早期模糊的定义和不切实际的愿景导致了智能体计算在很长一段时间内不受欢迎。直到最近,随着复杂
超级会员免费看
订阅专栏 解锁全文
1702

被折叠的 条评论
为什么被折叠?



