假设有N个集合,现在有M个包含关系,形如A⊆B,意思是集合A包含于集合B。显然,我们知道,A⊆B且B⊆A,就可以推出A=B,即A、B两个集合是相等的。;类似的,如果A⊆B,B⊆C,C⊆A,那么有A=B=C成立。
至少要验证多少对集合的包含关系(同样,形如A⊆B,为一个包含关系)。
solution:
求至少添加多少条边后能使原图变为强连通图。
Trajan缩点后 Max(入度为0的点数,出度为0的点数) 即为答案。
#include<iostream>
#include<cstdio>
#include<vector>
#include<stack>
#include<cstring>
using namespace std;
const int M=20001;
int n,m,cnt;
stack<int> s;
vector<int> map[M];
vector<int> now[M];
int Pre[M],Dfs_t;
int Low[M];
int Id[M];
bool Instack[M];
bool Vis[M];
void Dfs(int u)
{
Vis[u]=true;
Pre[u]=Low[u]=++Dfs_t;
Instack[u]=true;
s.push(u);
for(int i=0;i<map[u].size();++i)
{
int v=map[u][i];
if(!Vis[v])
{
Dfs(v);
Low[u]=min(Low[u],Low[v]);
}
else if(Instack[v])
Low[u]=min(Low[u],Pre[v]);
}
if(Pre[u]==Low[u])
{
int v=0;
cnt++;
while(u!=v)
{
v=s.top();
s.pop();
Instack[v]=false;
Id[v]=cnt;
}
}
return;
}
void Trajan()
{
for(int i=1;i<=n;++i)
if(!Vis[i])Dfs(i);
for(int i=1;i<=n;++i)
for(int j=0;j<map[i].size();++j)
{
int t=map[i][j];
if(Id[i]!=Id[t])
now[Id[i]].push_back(Id[t]);
}
return;
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=1;i<=m;++i)
{
int a,b;
scanf("%d %d",&a,&b);
map[a].push_back(b);
}
Trajan();
if(cnt==1)
{
puts("0");
return 0;
}
int In=0,Out=0;
memset(Vis,0,sizeof(Vis));
for(int i=1;i<=cnt;++i)
{
if(!now[i].size())Out++;
for(int j=0;j<now[i].size();++j)
Vis[now[i][j]]=true;
}
for(int i=1;i<=cnt;++i)if(!Vis[i])In++;
printf("%d\n",max(In,Out));
return 0;
}