[强连通]Smartoj P2395 集合

假设有N个集合,现在有M个包含关系,形如A⊆B,意思是集合A包含于集合B。显然,我们知道,A⊆B且B⊆A,就可以推出A=B,即A、B两个集合是相等的。;类似的,如果A⊆B,B⊆C,C⊆A,那么有A=B=C成立。

至少要验证多少对集合的包含关系(同样,形如A⊆B,为一个包含关系)。


solution:

求至少添加多少条边后能使原图变为强连通图。

Trajan缩点后 Max(入度为0的点数,出度为0的点数) 即为答案。


#include<iostream>
#include<cstdio>
#include<vector>
#include<stack>
#include<cstring>
using namespace std;
const int M=20001;
int n,m,cnt;

stack<int> s;
vector<int> map[M];
vector<int> now[M];

int Pre[M],Dfs_t;
int Low[M];
int Id[M];
bool Instack[M];
bool Vis[M];

void Dfs(int u)
{
	Vis[u]=true;
	Pre[u]=Low[u]=++Dfs_t;
	
	Instack[u]=true;
	s.push(u);
	
	for(int i=0;i<map[u].size();++i)
	{
		int v=map[u][i];
		if(!Vis[v])
		{
			Dfs(v);
			Low[u]=min(Low[u],Low[v]);
		}
		else if(Instack[v])
			Low[u]=min(Low[u],Pre[v]);
	}
	
	if(Pre[u]==Low[u])
	{
		int v=0;
		cnt++;
		while(u!=v)
		{
			v=s.top();
			s.pop();
			Instack[v]=false;
			Id[v]=cnt;
		}
	}
	return;
}

void Trajan()
{
	for(int i=1;i<=n;++i)
		if(!Vis[i])Dfs(i);
	
	for(int i=1;i<=n;++i)
	for(int j=0;j<map[i].size();++j)
	{
		int t=map[i][j];
		if(Id[i]!=Id[t])
			now[Id[i]].push_back(Id[t]);
	}
	return;
}

int main()
{
	scanf("%d %d",&n,&m);
	for(int i=1;i<=m;++i)
	{
		int a,b;
		scanf("%d %d",&a,&b);
		map[a].push_back(b);
	}
	
	Trajan();
	if(cnt==1)
	{
		puts("0");
		return 0;
	}
	
	int In=0,Out=0;
	memset(Vis,0,sizeof(Vis));
	for(int i=1;i<=cnt;++i)
	{
		if(!now[i].size())Out++;
		for(int j=0;j<now[i].size();++j)
		 Vis[now[i][j]]=true;
	}
	for(int i=1;i<=cnt;++i)if(!Vis[i])In++;
	
	printf("%d\n",max(In,Out));
	return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值