[堆]种树


在n个数中选出至多k个数,且两两不相邻,并使所选数的和最大。

很容易想到动规思路:f[i][j]表示种到第i棵树且种了j棵的最大获利,

则f[i][j]=max(f[i-1][j],f[i-2][j-1]+a[i]),注意边界、初始化即可。

但是,对于n<=300000的数据规模,需要另想算法。


我们先进行小规模枚举:

k=1时,显然取n个数中取最大的即可(暂不考虑全负的情况)。设最大的数是a[i]。

k=2时,则有两种可能:1、另取一个与a[i]不相邻的a[j]。2、取a[i-1]和a[i+1]。

我们可以发现:

如果k=1时最优解为a[i],那么我们便可以把a[i-1]和a[i+1]进行合并,因为它们要么同时被选,

要么同时落选(证明不难)。而且,我们还注意到:当选了a[i-1]和a[i+1]时,获利便增加了a[i-1]+a[i+1]-a[i]。

所以当a[i]被选时,我们就可以删去a[i-1]和a[i+1],并把a[i]改成a[i-1]+a[i+1]-a[i],重新找最大的。

每次找的都是最大的数,我们便可以使用堆进行操作,直到堆中最大值小于0或取出k个数后停止。复杂度O(klogn)。


#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;  
int n,i,j,k;
long long a[500005],ans=0;
bool b[500005];

struct node
{
  long long c;
  int n;
  friend bool operator <
  (const node x,const node y)
  {
	return x.c<y.c;
  }
};
priority_queue<node>q;

int main()
{
  cin>>n>>k;
  for(i=1;i<=n;i++)
  {
    scanf("%I64d",&a[i]);
    q.push((node){a[i],i});
  }
  for(i=1;i<=k && !q.empty();++i)
  {
    node t=q.top();
    q.pop();
    while(b[t.n])
    {
      t=q.top();
      q.pop();
    }
    if(t.c<=0)break;
    int p=t.n-1,n=t.n+1;
    while(b[p])p--;
    while(b[n])n++;
    b[p]=b[n]=true;
    ans+=t.c;
    a[t.n]=a[p]+a[n]-t.c;
    q.push((node){a[t.n],t.n});
  }
  cout<<ans;
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值