在n个数中选出至多k个数,且两两不相邻,并使所选数的和最大。
很容易想到动规思路:f[i][j]表示种到第i棵树且种了j棵的最大获利,
则f[i][j]=max(f[i-1][j],f[i-2][j-1]+a[i]),注意边界、初始化即可。
但是,对于n<=300000的数据规模,需要另想算法。
我们先进行小规模枚举:
k=1时,显然取n个数中取最大的即可(暂不考虑全负的情况)。设最大的数是a[i]。
k=2时,则有两种可能:1、另取一个与a[i]不相邻的a[j]。2、取a[i-1]和a[i+1]。
我们可以发现:
如果k=1时最优解为a[i],那么我们便可以把a[i-1]和a[i+1]进行合并,因为它们要么同时被选,
要么同时落选(证明不难)。而且,我们还注意到:当选了a[i-1]和a[i+1]时,获利便增加了a[i-1]+a[i+1]-a[i]。
所以当a[i]被选时,我们就可以删去a[i-1]和a[i+1],并把a[i]改成a[i-1]+a[i+1]-a[i],重新找最大的。
每次找的都是最大的数,我们便可以使用堆进行操作,直到堆中最大值小于0或取出k个数后停止。复杂度O(klogn)。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
int n,i,j,k;
long long a[500005],ans=0;
bool b[500005];
struct node
{
long long c;
int n;
friend bool operator <
(const node x,const node y)
{
return x.c<y.c;
}
};
priority_queue<node>q;
int main()
{
cin>>n>>k;
for(i=1;i<=n;i++)
{
scanf("%I64d",&a[i]);
q.push((node){a[i],i});
}
for(i=1;i<=k && !q.empty();++i)
{
node t=q.top();
q.pop();
while(b[t.n])
{
t=q.top();
q.pop();
}
if(t.c<=0)break;
int p=t.n-1,n=t.n+1;
while(b[p])p--;
while(b[n])n++;
b[p]=b[n]=true;
ans+=t.c;
a[t.n]=a[p]+a[n]-t.c;
q.push((node){a[t.n],t.n});
}
cout<<ans;
return 0;
}