1 Mallat算法
离散序列的Mallat算法分解公式如下:
其中,H(n)、G(n)分别表示所选取的小波函数对应的低通和高通滤波器的抽头系数序列。
从Mallat算法的分解原理可知,分解后的序列就是原序列与滤波器序列的卷积再进行隔点抽取而来。
离散序列的Mallat算法重构公式如下:
其中,h(n)、g(n)分别表示所选取的小波函数对应的低通和高通滤波器的抽头系数序列。
2 小波变换实现过程(C/C++)
2.1 小波变换结果序列长度
小波的Mallat算法分解后的序列长度由原序列长SoureLen和滤波器长FilterLen决定。从Mallat算法的分解原理可知,分解后的序列就是原序列与滤波器序列的卷积再进行隔点抽取而来。即分解抽取的结果长度为(SoureLen+FilterLen-1)/2。
2.2 获取滤波器组
对于一些通用的小波函数,简单起见,可以通过Matlab的wfilters(‘wavename’)获取4个滤波器;特殊的小波函数需要自行构造获得。
下面以db1小波函数(Haar小波)为例,其变换与重构滤波器组的结果如下:
//matlab输入获取命令
>> [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('db1')
//获取的结果
Lo_D =
0.7071 0.7071
Hi_D =
-0.7071 0.7071
Lo_R =
0.7071 0.7071
Hi_R =
0.7071 -0.7071
2.3 信号边界延拓
在Mallat算法中,假定输入序列是无限长的,而实际应用中输入的信号是有限的采样序列,这就会出现信号边界处理问题。对于边界信号的延拓一般有3种方法,即零延拓、对称延拓和周期延拓。
3种延拓方法比较情况如下: