深度神经网络—归一化

训练深度神经网络,归一化输入特征可以加快学习。
假设一个训练集有两个输入特征x1,x2,一般需要两个步骤:

  1. 零均值
  2. 归一化方差
    在这里插入图片描述
    左图为原始数据分布图;
    中间为零均值化后的分布图:
    在这里插入图片描述
    相当于移动训练集;
    右图为归一化方差后的分布图:
    在这里插入图片描述
    在原始分布图中,特征x1的方差比特征x2的方差大得多,通过上式的归一化操作,特征x1和特征x2具有了相抵的方差,效果如右图所示。

为什么归一化可以加速收敛速度?
下面是代价函数的计算公式:
在这里插入图片描述
在这里插入图片描述
左上图为没有归一化之前代价函数的图像。如果特征图在不同的范围,假如特征x1取值范围从1到1000,特征x2的取值范围为从0到1,结果参数w1和w2值得范围或者比率将会非常不同,为直观显示,这里将数据轴标记为w和b,代价函数就有点像狭长得碗。此时,如果进行代价函数优化的话,在左上图中使用梯度下降法,必须使用一个非常小的值,这样的话,如左下图所示,需要经过多次迭代过程,才能找到最小值。
右上图为归一化之后代价函数的图像。归一化的特征将会在相似的范围内,不是从1到1000,0到1这样的范围,而是在-1到1范围内的相似误差,此时的函数是一个更圆的球形轮廓,那么无论从哪个未知开始,都能更直接的找到最小值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值