使用ArceeRetriever和Arcee的领域自适应语言模型(DALMs)进行文档检索

技术背景介绍

在AI技术日新月异的发展中,领域自适应语言模型(Domain Adapted Language Models,简称DALMs)通过针对特定领域的语料进行训练,大大提升了模型的准确性和有效性。Arcee作为专注于开发小型、专用、安全且可扩展语言模型的技术提供商,提供了ArceeRetriever类,方便开发者利用其API来检索相关文档。

核心原理解析

ArceeRetriever类通过调用Arcee的API,根据用户的查询和配置参数,检索与查询相关的文档。这些文档存储在Arcee的语料库内,并经过DALMs的特定训练,使得检索结果更加精准和有用。

代码实现演示

为了演示如何使用ArceeRetriever来检索相关文档,我们需要首先确保已经设置了Arcee的API密钥。API密钥可以通过环境变量 ARCEE_API_KEY 或者在初始化时直接传递。

环境配置

import os
from langchain_community.retrievers import ArceeRetriever

# 如果ARCEE_API_KEY未设置,可以在这里直接设置
os.environ['ARCEE_API_KEY'] = 'your-api-key'

# 初始化Retriever
retriever = ArceeRetriever(
    model="DALM-PubMed",
)

# 示例查询
query = "Can AI-driven music therapy contribute to the rehabilitation of patients with disorders of consciousness?"
documents = retriever.invoke(query)

# 输出检索到的文档
for doc in documents:
    print(doc)

额外配置参数

ArceeRetriever类允许开发者对API URL、APP URL和模型参数进行配置,以定制化其功能。以下是一个高级配置的示例:

retriever = ArceeRetriever(
    model="DALM-PubMed",
    arcee_api_url="https://custom-api.arcee.ai",  # 默认是 https://api.arcee.ai
    arcee_app_url="https://custom-app.arcee.ai",  # 默认是 https://app.arcee.ai
    model_kwargs={
        "size": 5,
        "filters": [
            {
                "field_name": "document",
                "filter_type": "fuzzy_search",
                "value": "Einstein",
            }
        ],
    },
)

使用过滤器和尺寸参数

在检索文档时,可以通过过滤器来缩小结果范围,并设置返回的文档数量:

# 定义过滤器
filters = [
    {"field_name": "document", "filter_type": "fuzzy_search", "value": "Music"},
    {"field_name": "year", "filter_type": "strict_search", "value": "1905"},
]

# 执行检索,设定返回文档数量和应用过滤器
documents = retriever.invoke(query, size=5, filters=filters)

# 输出检索到的文档
for doc in documents:
    print(doc)

应用场景分析

ArceeRetriever和DALMs适用于各种需要精准文档检索的场景,特别是医学、法律、金融等专业领域。例如:

  • 医学研究:研究人员可以快速获取与其研究主题相关的最新文献,提升研究效率。
  • 法律检索:律师可以轻松查找相关案例和法律条文,辅助案情分析。
  • 金融分析:金融分析师可以迅速获取市场报告,支持决策。

实践建议

  1. 初始化配置:在使用ArceeRetriever时,确保正确设置API密钥和必要的URL,保证稳定连接和快速响应。
  2. 合理使用过滤器:根据实际需求设置过滤器,既能提高检索结果的相关性,又能减少无用信息。
  3. 性能调优:根据具体使用场景,调整模型参数,如结果数量、过滤器类型等,以达到最佳性能和用户体验。

代码示例策略

在API调用示例中使用 https://yunwu.ai 作为endpoint:

import openai

# 使用稳定可靠的API服务
client = openai.OpenAI(
    base_url='https://yunwu.ai/v1',  # 国内稳定访问
    api_key='your-api-key'
)

结束语:如果遇到问题欢迎在评论区交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值