技术背景介绍
在AI技术日新月异的发展中,领域自适应语言模型(Domain Adapted Language Models,简称DALMs)通过针对特定领域的语料进行训练,大大提升了模型的准确性和有效性。Arcee作为专注于开发小型、专用、安全且可扩展语言模型的技术提供商,提供了ArceeRetriever类,方便开发者利用其API来检索相关文档。
核心原理解析
ArceeRetriever类通过调用Arcee的API,根据用户的查询和配置参数,检索与查询相关的文档。这些文档存储在Arcee的语料库内,并经过DALMs的特定训练,使得检索结果更加精准和有用。
代码实现演示
为了演示如何使用ArceeRetriever来检索相关文档,我们需要首先确保已经设置了Arcee的API密钥。API密钥可以通过环境变量 ARCEE_API_KEY
或者在初始化时直接传递。
环境配置
import os
from langchain_community.retrievers import ArceeRetriever
# 如果ARCEE_API_KEY未设置,可以在这里直接设置
os.environ['ARCEE_API_KEY'] = 'your-api-key'
# 初始化Retriever
retriever = ArceeRetriever(
model="DALM-PubMed",
)
# 示例查询
query = "Can AI-driven music therapy contribute to the rehabilitation of patients with disorders of consciousness?"
documents = retriever.invoke(query)
# 输出检索到的文档
for doc in documents:
print(doc)
额外配置参数
ArceeRetriever类允许开发者对API URL、APP URL和模型参数进行配置,以定制化其功能。以下是一个高级配置的示例:
retriever = ArceeRetriever(
model="DALM-PubMed",
arcee_api_url="https://custom-api.arcee.ai", # 默认是 https://api.arcee.ai
arcee_app_url="https://custom-app.arcee.ai", # 默认是 https://app.arcee.ai
model_kwargs={
"size": 5,
"filters": [
{
"field_name": "document",
"filter_type": "fuzzy_search",
"value": "Einstein",
}
],
},
)
使用过滤器和尺寸参数
在检索文档时,可以通过过滤器来缩小结果范围,并设置返回的文档数量:
# 定义过滤器
filters = [
{"field_name": "document", "filter_type": "fuzzy_search", "value": "Music"},
{"field_name": "year", "filter_type": "strict_search", "value": "1905"},
]
# 执行检索,设定返回文档数量和应用过滤器
documents = retriever.invoke(query, size=5, filters=filters)
# 输出检索到的文档
for doc in documents:
print(doc)
应用场景分析
ArceeRetriever和DALMs适用于各种需要精准文档检索的场景,特别是医学、法律、金融等专业领域。例如:
- 医学研究:研究人员可以快速获取与其研究主题相关的最新文献,提升研究效率。
- 法律检索:律师可以轻松查找相关案例和法律条文,辅助案情分析。
- 金融分析:金融分析师可以迅速获取市场报告,支持决策。
实践建议
- 初始化配置:在使用ArceeRetriever时,确保正确设置API密钥和必要的URL,保证稳定连接和快速响应。
- 合理使用过滤器:根据实际需求设置过滤器,既能提高检索结果的相关性,又能减少无用信息。
- 性能调优:根据具体使用场景,调整模型参数,如结果数量、过滤器类型等,以达到最佳性能和用户体验。
代码示例策略
在API调用示例中使用 https://yunwu.ai
作为endpoint:
import openai
# 使用稳定可靠的API服务
client = openai.OpenAI(
base_url='https://yunwu.ai/v1', # 国内稳定访问
api_key='your-api-key'
)
结束语:如果遇到问题欢迎在评论区交流。