证明完全数都是偶数

完全数定义

完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
例如: 1 + 2 + 3 = 6 1 + 2 + 3 = 6 1+2+3=6

证明

若证完全数都是偶数,即证完全数非奇数
假设存在奇数是完全数,设其为 x x x
x x x 的因子集合为 X X X x x x 的真因子集合为 X ′ X' X X ′ = X − { x } X'=X-\{x\} X=X{x} y = ∑ X ′ y=\sum X' y=X ,奇数集为 U U U ,则有 X ⊂ U X \subset U XU

U U U 子集 U n U_n Un ,且 n ∈ U , n ≥ 3 n\in U,n\ge3 nU,n3 ,其中 U n = { 1 , 3 , 5 , . . . , n } , X ⊂ U n U_n=\{1,3,5,...,n\},X\sub U_n Un={1,3,5,...,n},XUn
由于 x = 1 x = 1 x=1 X ′ X' X 为空集,故此时 x x x 不为完全数,所以从 n ≥ 3 n\ge 3 n3 的情况来讨论
对于给定的集合 X X X x = ∏ X x=\prod X x=X
x > y x>y x>y,假设 x ⋅ k ≤ y + k x\cdot k\le y+k xky+k ,则 k ≤ y x + 1 < 2 k\le {y\over x} + 1 \lt 2 kxy+1<2
此时 ∀ x s u b ∈ X , x s u b ≥ 3 , x s u b ⋅ x > x s u b + y \forall x_{sub} \in X,x_{sub}\ge3,x_{sub} \cdot x >x_{sub}+y xsubX,xsub3,xsubx>xsub+y,所以对于给定的集合 X X X 只需要讨论 x = ∏ X x=\prod X x=X 的情况

n = 3 n = 3 n=3 时,有:
X = { 1 } , x = 1 , X ′ = ∅ X = \{1\},x=1,X'=\emptyset X={1},x=1,X=,故此时 x x x 不为完全数
X = { 1 , 3 } , x = 3 , X ′ = { 1 } , y = 1 , x > y X = \{1,3\},x=3,X'=\{1\},y=1,x\gt y X={1,3},x=3,X={1},y=1,x>y,故此时 x x x 不为完全数
则对 ∀ X ⊂ U 3 , x \forall X \sub U_3,x XU3,x 不为完全数
n = 5 n = 5 n=5 时,有:
X = { 1 , 5 } , x = 5 , X ′ = { 1 } , y = 1 , x > y X = \{1,5\},x=5,X'=\{1\},y=1,x\gt y X={1,5},x=5,X={1},y=1,x>y,故此时 x x x 不为完全数
X = { 1 , 3 , 5 } , x = 15 , X ′ = { 1 , 3 , 5 } , y = 9 , x > y X = \{1,3,5\},x=15,X'=\{1,3,5\},y=9,x\gt y X={1,3,5},x=15,X={1,3,5},y=9,x>y,故此时 x x x 不为完全数
则对 ∀ X ⊂ U 5 , x \forall X \sub U_5,x XU5,x 不为完全数
假设当 n = k n = k n=k 时,仍有 ∀ X ⊂ U k , x k > y k \forall X \sub U_k,x_k\gt y_k XUk,xk>yk ,即 x k x_k xk 不为完全数
则当 n = k + 2 n=k+2 n=k+2 时,有 U k + 2 = U k ∪ { k + 2 } U_{k+2}=U_k\cup \{k+2\} Uk+2=Uk{k+2}
∵ x k > y k \because x_k>y_k xk>yk ,且显然 k + 2 > 2 k+2\gt 2 k+2>2
∴ x k ⋅ ( k + 2 ) > y k + ( k + 2 ) \therefore x_k\cdot (k+2)>y_k+(k+2) xk(k+2)>yk+(k+2)
∴ \therefore ∀ X ∈ U k + 2 \forall X \in U_{k+2} XUk+2 x k + 2 > y k + 2 x_{k+2}\gt y_{k+2} xk+2>yk+2,即 x k + 2 x_{k+2} xk+2 不为完全数
∴ \therefore 根据数学归纳法,对 ∀ X ∈ U \forall X \in U XU x > y x\gt y x>y,即 x x x 不为完全数,即不存在奇数是完全数
∴ \therefore 完全数都是偶数成立

说明

该证明为自证,内容可能存在不严谨或错误的部分,如有意见欢迎讨论。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
哥德巴赫猜想是一个数学难题,至今没有被完全证明。但是,已经有很多数学家对它进行了探究,其中一些方法可以用Python来实现。下面我将介绍两种常见的证明方法的Python实现。 方法一:暴力枚举 哥德巴赫猜想的内容是:任何一个大于2的偶数都可以表示成两个质数的和。因此,我们可以从3开始枚举所有偶数,然后对每一个偶数n,枚举所有小于n的质数p,检查是否存在另一个质数q=n-p。如果存在,则n可以表示成p和q的和。 下面是Python代码实现: ```python def is_prime(n): """ 判断一个数是否为质数 """ if n < 2: return False for i in range(2, int(n ** 0.5) + 1): if n % i == 0: return False return True def goldbach_conjecture(n): """ 判断一个偶数是否满足哥德巴赫猜想 """ for i in range(2, n): if is_prime(i) and is_prime(n-i): return i, n-i return None # 测试 print(goldbach_conjecture(4)) # (2, 2) print(goldbach_conjecture(6)) # (3, 3) print(goldbach_conjecture(8)) # (3, 5) print(goldbach_conjecture(10)) # (3, 7) ``` 方法二:基于素数分布的证明 另一种证明方法是基于素数分布的。这个方法的核心思想是,对于任意一个大于2的偶数n,可以找到两个相邻的素数p和q,使得p+q=n。这个结论可以用Python代码来证明。 下面是Python代码实现: ```python def is_prime(n): """ 判断一个数是否为质数 """ if n < 2: return False for i in range(2, int(n ** 0.5) + 1): if n % i == 0: return False return True def prime_distribution(n): """ 找到两个相邻的素数p和q,使得p+q=n """ if n % 2 != 0 or n < 4: return None for i in range(2, n // 2 + 1): if is_prime(i) and is_prime(n-i): return i, n-i # 测试 print(prime_distribution(4)) # (2, 2) print(prime_distribution(6)) # (3, 3) print(prime_distribution(8)) # (3, 5) print(prime_distribution(10)) # (5, 5) ``` 需要注意的是,这两种方法并不能证明哥德巴赫猜想的普遍性。它们只是针对某些特定的偶数进行了验证。而要证明哥德巴赫猜想的普遍性,则需要更复杂的数学证明方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值