有限域F_2上多项式的分解

本文探讨了在二元域F2上分解多项式的方法,包括基于棋盘游戏的算法和多项式除法。通过建立棋盘模型并利用多项式的特定性质,提出了一种解决多项式分解的有效策略。同时,通过实例展示了如何使用这两种方法分解特定的多项式,证明了方法的可行性。此外,还讨论了多项式分解在有限域中的重要性和独特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

选题:分解有限域 F 2 F_2 F2 上多项式 f ( x ) = x 9 + x 8 + x 7 + x 4 + x 3 + x + 1 f(x) = x^9 + x^8 + x^7 + x^4 + x^3 + x + 1 f(x)=x9+x8+x7+x4+x3+x+1

有限域 F 2 F_2 F2 上多项式的分解

摘要: 基于不同的数域进行多项式分解有不同的特性,而二元域是一个有着特殊意义的有限域,本文研究二元域下的多项式分解,根据已有方案提出一个可以解决选题的方法,并证明其正确性。

关键字: 数论 有限域 二元域 多项式分解

有限域在计算机领域是一个重要的概念,计算机的存储空间是有限的,因此运算也是基于有限的存储进行。而无限域中的计算难以直接应用于计算机,因此有限域的研究十分重要。另外一方面,多项式的因式分解问题是代数数学的一个基本问题,并且在编码理论中有大量的应用,因此有限域上的多项式也是一个重要的研究分支,比如扩域需要基于不可约多项式来构造,而扩域的运算也要基于多项式的加法和乘法规则进行。又比如拉格朗日插值法、泰勒展开等等一系列数学方法,都是基于多项式的方法,而在计算机上使用就有必要转化为有限域上的形式。在有限域上,多项式的运算要满足一些特殊的规则,从而使得其与无限域上的多项式有了不一样的特性。另外一方面,同样是无限域,实数域与复数域上的多项式也有不一样的特性,以多项式的分解为例,实数域上存在次数不为一不可约多项式,而复数域上则只有次数为一不可约多项式。在有限域中,二元域是一个有特殊意义的域,因为计算机的机器码就是0和1的形式,同时二元域上有一些有趣的特性,这也让二元域上的多项式分解有了不一样的特性。

1 相关研究

在文献[1]中提到了基于Miller-Rabin的素性检验的多项式分解,拓展素性检验到多项式上,是一种概率性算法。文献[2]中提到了有限域 F p F_p Fp 中形如 x n − 1 x^n-1 xn1 的多项式的因式分解。当 n = d ( p − 1 ) , d ∣ ( p − 1 ) , d < p − 1 n=d(p-1),d|(p-1),d<p-1 n=d(p1),d(p1),d<p1时, 可借助 F p F_p Fp 上的本原多项式,通过Dickson多项式解决多项式分解问题。文献[3]中进一步细致地研究了 F 2 F_2 F2 上多项式分解算法,将多项式分解问题转化为了棋盘游戏,通过建模研究了一个可分解任意二元域上多项式的算法。

2 预备知识

2.1 域的定义

定义 2.1.1 < F , + , ∗ > <F,+,*> <F,+,> 是一个带幺交换环, F ∗ F^* F 表示 F F F 中所有的非零元素的集合,如果 < F ∗ , ∗ > <F^*,*> <F,> 是一个交换群,则称 < F , + , ∗ > <F,+,*> <F,+,> 为域。 < F , + > <F,+> <F,+> 为域 < F , + , ∗ > <F,+,*> <F,+,> 的加法群, < F ∗ , ∗ > <F^*,*> <F,> 称为域 < F , + , ∗ > <F,+,*> <F,+,> 的乘法群。通常用 0 0 0 表示加法群的单位元,用 &1& 表示乘法群的单位元。
定义 2.1.2 只含有有限个元素的域称为有限域。有限域也称为Galois域。含有 q q q 个元素的有限域通常记为 F q F_q Fq 或者 GF(q)。

2.2 域上的多项式

定义 2.2.1 p ( x ) ∈ F [ x ] , d e g ( p ( x ) ) ≥ 1 p(x) \in F[x],deg(p(x)) \ge 1 p(x)F[x],deg(p(x))1。 如果 p ( x ) p(x) p(x) F [ x ] F[x] F[x] 中只有因式 c ∈ F c \in F cF c ⋅ p ( x ) ∈ F [ x ] c \cdot p(x) \in F[x] cp(x)F[x],则称 p ( x ) p(x) p(x) 为域 F F F 上的不可约多项式;否则,称 p ( x ) p(x) p(x) 为域 F F F 上的可约多项式。
定义 2.2.2 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 是整环 R R R 上的任意两个多项式,其中 g ( x ) ≠ 0 g(x) \ne 0 g(x)=0,如果存在一个多项式 q ( x ) q(x) q(x) 使得等式
f ( x ) = q ( x ) ⋅ g ( x ) f(x)=q(x) \cdot g(x) f(x)=q(x)g(x)
成立,就称 g ( x ) g(x) g(x) 整除 f ( x ) f(x) f(x) 或者 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 整除,记作 g ( x ) ∣ f ( x ) g(x)|f(x) g(x)f(x)。这时把 g ( x ) g(x) g(x) 称作 f ( x ) f(x) f(x) 的因式, f ( x ) f(x) f(x) 叫做 g ( x ) g(x) g(x) 的倍式。否则就称 g ( x ) g(x) g(x) 不能整除 f ( x ) f(x) f(x) 或者 f ( x ) f(x) f(x) 不能被 g ( x ) g(x) g(x) 整除。

2.3 多项式分解的几类方法

根据文献[4]中的介绍,常见的多项式分解方法有多项式除法、待定系数法以及利用单位根的方法。
多项式除法,首先要找到多项式的一个根 α \alpha α,然后根据多项式除法将原式除以 x − α x-\alpha xα,将商进行同样的操作,如果商不可约,则停止。如果有重根,则采用微商法来计算。
待定系数法,将原式假设为若干因式的乘积,与原式对照,解待定系数恒等式求值。
利用单位根的方法,多项式 f ( x ) = x n − 1 f(x)=x^n-1 f(x)=xn1 n n n 个复根称为 n n n 次单位根,公式为:
ϵ k = c o s 2 k π n + i s i n 2 k π n ( k = 0 , 1... n − 1 ) \epsilon_k=cos\frac{2k\pi}{n}+isin\frac{2k\pi}{n}(k=0,1...n-1) ϵk=cosn2+isinn2(k=0,1...n1)
但仅能够解决 x n − 1 x^n-1 xn1 x n − 1 + . . . + 1 x^{n-1}+...+1 xn1+...+1 形的多项式分解。

3 解决方案

3.1 定理

定理1 定义在二元域上的多项式 p ( x ) p(x) p(x) 次数不为零的项的数量为偶数时, p ( x ) p(x) p(x) 必然包含因式 x + 1 x+1 x+1
证明: 显然 2 ∣ p ( 1 ) 2|p(1) 2∣p(1),所以 p ( 1 ) = 0 p(1)=0 p(1)=0,说明 1 1 1 是多项式 p ( x ) p(x) p(x) 的根,所以多项式包含 x + 1 x+1 x+1 形式的因子。
推论1 定义在二元域上的多项式 p ( x ) p(x) p(x) 次数不为零的项的数量为奇数时, p ( x ) p(x) p(x) 必然不包含因式 x + 1 x+1 x+1,且其因式也不包含因式 x + 1 x+1 x+1
定理2 定义在二元域上的多项式 p ( x ) p(x) p(x) 若不可约,则 x 0 x^0 x0 项必为 1 1 1

3.2 方案及实例

方案1 棋盘游戏方法
首先根据多项式的最高系数构建一个 ( m + 1 ) × ( n + 1 ) (m+1)\times (n+1) (m+1)×(n+1) 的棋盘,保证 m + n m+n m+n 等于多项式的最高系数。分别用纵坐标和横坐标代表次数为 m m m 和次数为 n n n 的因子多项式。因式的所有项系数默认为1,通过改变因式的系数使得棋盘对应的横行和纵列表示为0,其他格子则为1。从左到右,每个斜列代表原式的从低到高位的项,对斜列求和,若为 2 2 2 的倍数,则该项为 0 0 0。对于给定的 m , n m,n m,n,如果任意划去横列和纵列都无法凑出原式,则说明原式不含有该形式的因式。根据厄拉多筛法,若多项式 p ( x ) p(x) p(x) 可约,则必然还有因式 r ( x ) r(x) r(x),使得 d e g ( r ( x ) ) ≤ ⌊ d e g ( p ( x ) ) 2 ⌋ deg(r(x)) \le \lfloor \frac{deg(p(x))}{2} \rfloor deg(r(x))2deg(p(x)),因此对于 p ( x ) p(x) p(x) 只需要检查系数满足上述不等式的多项式即可。对 ∀ p ( x ) , d e g ( p ( x ) ) \forall p(x), deg(p(x)) p(x),deg(p(x)) 可以拆分为 m + n m+n m+n m > n m>n m>n 的形式,在这个棋盘上任意选择行列使斜列的奇偶与 p ( x ) p(x) p(x) 对应项的系数一致,然后遍历所有的 m , n m,n m,n 对。

定理1 ( 1 1 , j 1 ) (1_1,j_1) (11,j1) ( i 2 , j 2 ) (i_2,j_2) (i2,j2) 1 1 1, 则 ( i 1 , j 2 ) (i_1,j_2) (i1,j2) ( i 2 , j 1 ) (i_2,j_1) (i2,j1) 均为 1 1 1
定理2 ( i , j ) (i,j) (i,j) 0 0 0,则第 i i i 行为 0 0 0 与第 j j j 列为 0 0 0 至少有一个成立。
定理3 对于 ( i 1 , j 1 ) , ( i 1 , j 2 ) , ( i 1 , j 2 ) , ( i 2 , j 2 ) (i_1,j_1),(i_1,j_2),(i_1,j_2),(i_2,j_2) (i1,j1)(i1,j2)(i1,j2)(i2,j2) 中不存在为 1 1 1 的格子数为奇数的情况。

实例: 分解 F 2 F_2 F2 上多项式 f ( x ) = x 9 + x 8 + x 7 + x 4 + x 3 + x + 1 f(x) = x^9 + x^8 + x^7 + x^4 + x^3 + x + 1 f(x)=x9+x8+x7+x4+x3+x+1

d e g ( f ( x ) ) = 9 = 5 + 4 deg(f(x))=9=5+4 deg(f(x))=9=5+4
将多项式 f ( x ) f(x) f(x) 拆分成 6 × 5 6 \times 5 6×5 的棋盘,如下所示:

x\y
01234
011111
111111
211111
311111
411111
511111

因为 x 9 , x 0 x^9, x^0 x9,x0 项的次数为1,所以 ( 0 , 0 ) , ( 0 , 1 ) , ( 1 , 0 ) , ( 1 , 1 ) (0,0),(0,1),(1,0),(1,1) (0,0)(0,1)(1,0)(1,1) 为1,所以 x = 0 , x = 5 , y = 0 , y = 4 x=0,x=5,y=0,y=4 x=0,x=5,y=0,y=4 要保留。另一方面, x 8 , x 7 , x 1 x^8, x^7, x^1 x8,x7,x1 项的次数为1,所以 y = 3 , x = 4 y=3,x=4 y=3,x=4 中必有一个保留一个消去, y = 1 , x = 1 y=1,x=1 y=1,x=1 y = 2 , x = 3 y=2,x=3 y=2,x=3 也是如此。剩余 8 × 2 0 × 2 1 = 16 8 \times 2^0 \times 2^1 = 16 8×20×21=16 种组合。
z z z 表示乘积,根据推论1排除,所有组合为:

  1. x : ( 1 , 1 , 1 , 1 , 1 , 1 ) , y : ( 1 , 0 , 0 , 0 , 1 ) x:(1,1,1,1,1,1),y:(1,0,0,0,1) x:(1,1,1,1,1,1),y:(1,0,0,0,1) X
  2. x : ( 1 , 0 , 1 , 1 , 1 , 1 ) , y : ( 1 , 1 , 0 , 0 , 1 ) , z : ( 1 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 1 ) x:(1,0,1,1,1,1),y:(1,1,0,0,1),z:(1,1,1,0,1,0,0,1,1,1) x:(1,0,1,1,1,1),y:(1,1,0,0,1),z:(1,1,1,0,1,0,0,1,1,1)
  3. x : ( 1 , 1 , 1 , 1 , 0 , 1 ) , y : ( 1 , 0 , 0 , 1 , 1 ) , z : ( 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 ) x:(1,1,1,1,0,1),y:(1,0,0,1,1),z:(1,1,1,0,0,1,0,0,1,1) x:(1,1,1,1,0,1),y:(1,0,0,1,1),z:(1,1,1,0,0,1,0,0,1,1)
  4. x : ( 1 , 0 , 1 , 1 , 0 , 1 ) , y : ( 1 , 1 , 0 , 1 , 1 ) , z : ( 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 1 ) x:(1,0,1,1,0,1),y:(1,1,0,1,1),z:(1,1,1,1,0,0,1,1,1,1) x:(1,0,1,1,0,1),y:(1,1,0,1,1),z:(1,1,1,1,0,0,1,1,1,1)
  5. x : ( 1 , 1 , 1 , 0 , 1 , 1 ) , y : ( 1 , 0 , 1 , 0 , 1 ) , z : ( 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 1 ) x:(1,1,1,0,1,1),y:(1,0,1,0,1),z:(1,1,0,1,1,0,0,1,1,1) x:(1,1,1,0,1,1),y:(1,0,1,0,1),z:(1,1,0,1,1,0,0,1,1,1) 与原式一致
  6. x : ( 1 , 0 , 1 , 0 , 1 , 1 ) , y : ( 1 , 1 , 1 , 0 , 1 ) x:(1,0,1,0,1,1),y:(1,1,1,0,1) x:(1,0,1,0,1,1),y:(1,1,1,0,1) X
  7. x : ( 1 , 1 , 1 , 0 , 0 , 1 ) , y : ( 1 , 0 , 1 , 1 , 1 ) x:(1,1,1,0,0,1),y:(1,0,1,1,1) x:(1,1,1,0,0,1),y:(1,0,1,1,1) X
  8. x : ( 1 , 0 , 1 , 0 , 0 , 1 ) , y : ( 1 , 1 , 1 , 1 , 1 ) , z : ( 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 ) x:(1,0,1,0,0,1),y:(1,1,1,1,1),z:(1,1,0,0,0,0,0,1,1,1) x:(1,0,1,0,0,1),y:(1,1,1,1,1),z:(1,1,0,0,0,0,0,1,1,1)
  9. x : ( 1 , 1 , 0 , 1 , 1 , 1 ) , y : ( 1 , 0 , 0 , 0 , 1 ) , z : ( 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 ) x:(1,1,0,1,1,1),y:(1,0,0,0,1),z:(1,1,0,1,0,0,0,1,1,1) x:(1,1,0,1,1,1),y:(1,0,0,0,1),z:(1,1,0,1,0,0,0,1,1,1)
  10. x : ( 1 , 0 , 0 , 1 , 1 , 1 ) , y : ( 1 , 1 , 0 , 0 , 1 ) x:(1,0,0,1,1,1),y:(1,1,0,0,1) x:(1,0,0,1,1,1),y:(1,1,0,0,1) X
  11. x : ( 1 , 1 , 0 , 1 , 0 , 1 ) , y : ( 1 , 0 , 0 , 1 , 1 ) x:(1,1,0,1,0,1),y:(1,0,0,1,1) x:(1,1,0,1,0,1),y:(1,0,0,1,1) X
  12. x : ( 1 , 0 , 0 , 1 , 0 , 1 ) , y : ( 1 , 1 , 0 , 1 , 1 ) x:(1,0,0,1,0,1),y:(1,1,0,1,1) x:(1,0,0,1,0,1),y:(1,1,0,1,1) X
  13. x : ( 1 , 1 , 0 , 0 , 1 , 1 ) , y : ( 1 , 0 , 1 , 0 , 1 ) x:(1,1,0,0,1,1),y:(1,0,1,0,1) x:(1,1,0,0,1,1),y:(1,0,1,0,1) X
  14. x : ( 1 , 0 , 0 , 0 , 1 , 1 ) , y : ( 1 , 1 , 1 , 0 , 1 ) x:(1,0,0,0,1,1),y:(1,1,1,0,1) x:(1,0,0,0,1,1),y:(1,1,1,0,1) X
  15. x : ( 1 , 1 , 0 , 0 , 0 , 1 ) , y : ( 1 , 0 , 1 , 1 , 1 ) x:(1,1,0,0,0,1),y:(1,0,1,1,1) x:(1,1,0,0,0,1),y:(1,0,1,1,1) X
  16. x : ( 1 , 0 , 0 , 0 , 0 , 1 ) , y : ( 1 , 1 , 1 , 1 , 1 ) x:(1,0,0,0,0,1),y:(1,1,1,1,1) x:(1,0,0,0,0,1),y:(1,1,1,1,1) X

所以可以将原式初步分解为: ( x 5 + x 4 + x 2 + x + 1 ) ⋅ ( x 4 + x 2 + 1 ) (x^5+x^4+x^2+x+1) \cdot (x^4+x^2+1) (x5+x4+x2+x+1)(x4+x2+1),重复上述过程,直到因式不可分解为止。最后得到的因式分解为: ( x 5 + x 4 + x 2 + x + 1 ) ⋅ ( x 2 + x + 1 ) 2 (x^5+x^4+x^2+x+1) \cdot (x^2+x+1)^2 (x5+x4+x2+x+1)(x2+x+1)2

正确性分析: 这里不做详细地推导,但是简单地对此进行一个理解以说明方案的正确性。对于棋盘中的任意格子可以表示为一个坐标 ( x , y ) (x,y) (x,y),可以简单理解 x , y x,y x,y 表示参与乘法的两个因式的对应项,此时 x + y x+y x+y 表示乘积对应项的次数。我们可以发现,每个斜列的所有格子代表项的次数相同,所以对于斜列的所有格子求和就可以的得到乘积对应项的系数。另一方面,二元域上的多项式的系数定义在 F 2 F_2 F2 上,所以如果求和斜列上所有的格子得到的数是偶数,则对应项的系数为0,否则为1。

方案2 多项式除法
结合厄拉多筛法,对于多项式 p ( x ) p(x) p(x) 可约,则必有因式 r ( x ) r(x) r(x),使得 d e g ( r ( x ) ) ≤ ⌊ d e g ( p ( x ) ) 2 ⌋ deg(r(x)) \le \lfloor \frac{deg(p(x))}{2} \rfloor deg(r(x))2deg(p(x)),次数从低到高构造次数不高于 d e g ( p ( x ) ) 2 \frac{deg(p(x))}{2} 2deg(p(x)) 的不可约多项式,然后将多项式 p ( x ) p(x) p(x) 依次与这些不可约多项式相除,最后获得因式分解。

实例: 分解 F 2 F_2 F2 上多项式 f ( x ) = x 9 + x 8 + x 7 + x 4 + x 3 + x + 1 f(x) = x^9 + x^8 + x^7 + x^4 + x^3 + x + 1 f(x)=x9+x8+x7+x4+x3+x+1

次数为 1 1 1 的不可约多项式: x + 1 x+1 x+1
次数为 2 2 2 的不可约多项式: x 2 + x + 1 x^2+x+1 x2+x+1
次数为 3 3 3 的不可约多项式: x 3 + x 2 + 1 x^3+x^2+1 x3+x2+1 x 3 + x + 1 x^3+x+1 x3+x+1
次数为 4 4 4 的不可约多项式: x 4 + x 3 + 1 x^4+x^3+1 x4+x3+1 x 4 + x + 1 x^4+x+1 x4+x+1

根据多项式除法:
( x 9 + x 8 + x 7 + x 4 + x 3 + x + 1 ) ÷ ( x 2 + x + 1 ) = x 7 + x + 1 (x^9 + x^8 + x^7 + x^4 + x^3 + x + 1) \div (x^2+x+1) = x^7+x+1 (x9+x8+x7+x4+x3+x+1)÷(x2+x+1)=x7+x+1
( x 7 + x + 1 ) ÷ ( x 2 + x + 1 ) = x 5 + x 4 + x 2 + x + 1 (x^7+x+1) \div (x^2+x+1) = x^5+x^4+x^2+x+1 (x7+x+1)÷(x2+x+1)=x5+x4+x2+x+1
x 5 + x 4 + x 2 + x + 1 x^5+x^4+x^2+x+1 x5+x4+x2+x+1 不可约。

综上 f ( x ) = x 9 + x 8 + x 7 + x 4 + x 3 + x + 1 = ( x 5 + x 4 + x 2 + x + 1 ) ⋅ ( x 2 + x + 1 ) 2 f(x) = x^9 + x^8 + x^7 + x^4 + x^3 + x + 1 = (x^5+x^4+x^2+x+1) \cdot (x^2+x+1)^2 f(x)=x9+x8+x7+x4+x3+x+1=(x5+x4+x2+x+1)(x2+x+1)2

4 结论

本文提出了两种因式分解的方案,并根据实例进行多项式分解。实际上根据文献中的描述,还存在很多有限域上的多项式分解的方法,限于篇幅,这里不做详细介绍。
多项式的分解和整数的分解有很多类似的地方,但是不同于整数,同一个次数的多项式有多个不可约多项式,这使得多项式的分解更加复杂。而结合二元域的一些性质,可以极大地降低多项式分解的复杂度。在二元域中,加法等于减法,多项式乘以 2 2 2 等于0,这些特征都可以用于多项式分解。
本文中采用了3.1中的定理1加快了对二元域上的多项式分解,从概率学的角度来说,可以过滤一半的因式,从方案1中即可看出,通过这个定理过滤了大部分的组合。而在方案2中,结合了定理1和定理2迅速的找出不同次数的不可约多项式,然后根据厄拉多筛法和不可约多项式就可以分解多项式。
最后分解 F 2 F_2 F2 上多项式 f ( x ) = x 9 + x 8 + x 7 + x 4 + x 3 + x + 1 = ( x 5 + x 4 + x 2 + x + 1 ) ⋅ ( x 2 + x + 1 ) 2 f(x) = x^9 + x^8 + x^7 + x^4 + x^3 + x + 1 = (x^5+x^4+x^2+x+1) \cdot (x^2+x+1)^2 f(x)=x9+x8+x7+x4+x3+x+1=(x5+x4+x2+x+1)(x2+x+1)2

5 参考文献

[1] 孙荣辛,田园.基于Miller-Rabin素性检测的多项式分解算法[J].计算机科学与探索,2014,8(12):1474-1484.

[2] 丁洋,王永超.多项式 x n − 1 x^n-1 xn1在有限域 F p F_p Fp上的因式分解[J].上海大学学报(自然科学版),2020,26(02):189-196.

[3] 陈玺,屈龙江,海昕,李超.棋盘游戏与有限域上多项式分解算法[J].数学的实践与认识,2014,44(06):210-215.

[4] 王锋.多项式因式分解的几类方法[J].电子制作,2013(22):180.DOI:10.16589/j.cnki.cn11-3571/tn.2013.22.005.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值