AlexNet深度卷积神经网络模型架构详解

AlexNet 是深度学习领域的一个里程碑模型,由 Alex Krizhevsky、Ilya Sutskever 和 Geoffrey Hinton 在 2012 年提出,并在 ImageNet 大规模视觉识别挑战赛(ILSVRC)中取得了突破性成果。它首次展示了深度卷积神经网络(CNN)在图像分类任务中的强大能力,并为后续的深度学习研究奠定了基础。

以下是 AlexNet 的详细网络结构和关键设计特点:


1. AlexNet 的整体架构

AlexNet 包含 8 层(5 层卷积层 + 3 层全连接层),并且引入了许多创新的设计理念。以下是每一层的具体结构:

(1) 输入层
  • 输入图像大小为 227×227×3(RGB 图像)。
  • 注意:原始论文中提到输入图像大小为 224×224,但由于卷积核大小和步幅的原因,实际输入需要调整为 227×227。
(2) 第一层卷积层(Conv1)
  • 卷积核大小:11×11
  • 步幅(stride):4
  • 输出通道数:96
  • 激活函数:ReLU
  • 输出大小:(227 - 11) / 4 + 1 = 5555×55×96
(3) 第一层池化层(Pool1)
  • 池化类型:最大池化(Max Pooling)
  • 池化窗口大小:3×3
  • 步幅:2
  • 输出大小:(55 - 3) / 2 + 1 = 2727×27×96
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值