利用高性能计算加速深度学习算法

1.       深度学习

        深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习典型应用为图像识别和语音识别。(由于本人不是深度学习专业人士,对深度学习理论知识不多介绍,说多了就班门弄斧了,后面主要介绍下这些深度学习算法如何进行并行化设计和优化)

2.       CPU+GPU异构协同计算简介

         近年来,计算机图形处理器(GPU,GraphicsProcess Unit)正在以大大超过摩尔定律的速度高速发展(大约每隔半年 GPU 的性能增加一倍),远远超过了CPU 的发展速度。

         CPU+GPU异构协同计算模式(图1),利用CPU进行复杂逻辑和事务处理等串行计算,利用 GPU 完成大规模并行计算,即可以各尽其能,充分发挥计算系统的处理能力。

图1 CPU+GPU异构体系结构

        目前,主流的GPU具有强大的计算能力和内存带宽,如图2所示,无论性能还是内存带宽,均远大于同代的CPU。对于GPU, Gflop/$和Gflops/w均高于CPU。

图2 GPU计算能力

3.       深度学习中的CPU+GPU集群架构

        CPU+GPU集群工作模式(图3),每个节点内采用CPU+GPU异构模式,并且每个节点可以配置多块GPU卡。节点间采用高速InfiniBand网络互连,速度可以达到双向56Gb/s,实测双向5GB/s。后端采用并行文件系统。采用数据划分、任务划分的方式对应用进行并行化,适用于大规模数据并行计算。

图3 CPU+GPU集群架构

4.       利用GPU加速深度学习算法


4.1.       单GPU并行

图4 单GPU计算流程

        针对每次训练数据,模型内计算通过多次GPU 内核的调用完成计算。权重W值一直存在GPU内存中,直到所有训练数据计算完毕之后回传到系统内存中。Data为图像或语音数据。

4.2.       多GPU卡并行

       多GPU并行计算时,各GPU有自己独立的内存,卡之间的并行属于分布式计算模式。针对深度学习算法,采用多GPU卡计算可以采用两种并行方法:数据并行和模型并行。

4.2.1.       数据并行

       数据并行是指不同的GPU计算不同的训练数据,即把训练数据划分给不同的GPU进行分别计算,由于训练是逐步训练的,后一个训练数据的计算需要前一个训练数据更新的W,数据并行改变了这个计算顺序,多GPU计算需要进行W的互相通信,满足训练的特点,使训练可以收敛。

       数据并行如图5所示,多GPU训练不同的数据,每训练一次需要同步W,使得后面的训练始终为最新的W。

图5 数据并行

数据并行的特点:

1)        优点

            a)        实现比较容易,也比较容易扩展

            b)        只需要进行W的通信,模型内的数据不需要通信

2)        缺点

           a)        当模型较大时,GPU内存无法满足存储要求,无法完成计算

        根据多GPU卡之间的W通信,下面介绍两种通信方法:主从模式和令牌环模式。

1)        主从模式

       主从模式:选择一个进程或线程作为主进程或线程,各个GPU把每次训练得到的ΔW发给主进程或线程,主进程或线程进行W更新,然后再发送给GPU,GPU再进行下一个数据的训练。如图6所示。

图6 主从模式

2)        令牌环模式

       令牌环模式:每个GPU把自己训练得到的ΔW更新到W上,并且发送到下一个GPU,保证令牌环上的W始终为最新的W。如图7所示。

图7 令牌环模式

两种模式对比如表1

表1 主从模式和令牌环模式对比

模式

优点

缺点

主从模式

收敛速度更快

GPU计算需要等待,影响GPU计算;主进程或线程压力较大

令牌环模式

GPU计算不需要等待通信,性能更好

通信速度影响收敛的速度

4.2.2.       模型并行

        模型并行是指多个GPU同时计算同一个训练数据,多个GPU对模型内的数据进行划分,如图8所示。Kernel计算和通信流程如图9所示,在一次训练数据多层计算过程中,每个GPU内核计算之后需要互相交换数据才能进行下一次的计算。

图8 模型并行

图9 模型并行:多GPU计算内核和通信示意图

模型并行特点:

1)        优点

           a)        可以处理大模型的情况

2)        缺点

           a)        需要更频繁的通信,增加通信压力

           b)        实现难度较大

4.3.       GPU集群并行

          GPU集群并行模式即为多GPU并行中各种并行模式的扩展,如表2所示。节点间采用InfiniBand通信,节点间的GPU通过RMDA通信,节点内多GPU之间采用P2P通信。

表2 GPU集群并行模式

模式

节点间

节点内

特点

模式1

令牌环

单一模式的缺点放大

模式2

主从

模式3

模型并行

模式4

令牌环

主从

结合各种模式的有点,避免某一模式的缺点放大

模式5

主从

令牌环

模式6

令牌环

模型并行

模式7

主从

模型并行

4.4.       性能分享

4.4.1.       基于GPU集群的Caffe并行加速

图10 Caffe性能

8节点GPU服务器,2 K20mGPU/节点,56Gb/s InfiniBand网络,Lustre并行文件系统

4.4.2.       基于GPU集群的DNN并行加速

图11 DNN测试性能

4节点GPU服务器,4 K20mGPU/节点,56Gb/s InfiniBand网络

5.       CPU+FPGA协同计算加速线上计算

        相对于训练计算,线上识别的计算是小而众多的任务计算,每次请求的计算比较小,但请求的任务数十分庞大,GPU计算虽然获得很好的性能,但功耗仍然是个严峻的问题。

        目前主流的FPGA卡功耗只有主流GPU的十分之一,性能相差2-3倍,FPGA相对于GPU具有更高的GFlops/W。

利用FPGA解决线上识别计算可以采用分布式+FPGA计算的模式,如图12所示,上层可以采用Hadoop或Spark调度,底层利用FPGA进行计算。

图12 分布式计算+FPGA计算

        目前,FPGA已开始支持高级语言,如AlteraFPGA支持OpenCL,Xilinx FPGA支持HLS,这对程序员利用FPGA开发减低了难度。这些新平台的支持还有很多问题,也许后面会支持的越来越好。

 

备注:由于对深度学习算法了解比较肤浅,以上内容难免无误,请大家理解并提出修改意见。

 QQ:331526010

Email:zhang03_11@163.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值