[Tensorflow]L2正则化和collection【tf.GraphKeys】

本文介绍了如何在TensorFlow中使用L2正则化,强调了将参数组织到集合中以方便计算损失的重要性。同时详细阐述了tf.GraphKeys的作用,包括默认的GLOBAL_VARIABLES集合以及如何创建和使用自定义集合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

L2-Regularization 实现的话,需要把所有的参数放在一个集合内,最后计算loss时,再减去加权值。

相比自己乱搞,代码一团糟,Tensorflow 提供了更优美的实现方法。

一、tf.GraphKeys : 多个包含Variables(Tensor)集合

 (1)GLOBAL_VARIABLES:使用tf.get_variable()时,默认会将vairable放入这个集合。

   我们熟悉的tf.global_variables_initializer()就是初始化这个集合内的Variables。

import tensorflow as tf
sess=tf.Session()
a=tf.get_variable("a",[3,3,32,64],initializer=tf.random_normal_initializer())
b=tf.get_variable("b",[64],initializer=tf.random_normal_initializer())
#collections=None等价于 collection=[tf.GraphKeys.GLOBAL_VARIABLES]

gv= tf.get_collection(tf.
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值