学习这个东西的目的是:计算已编号的处理机之间应该如何相连。
编号为0,1,2……15的16个处理机,每个处理机均可用4位二进制编码来表示。
1、恒等置换:相同编号的输入端和输出端一一对应互连。
编号0连接编号0,编号1连接编号1……
输入和输出有相同的编号,不适用于输入与输出一同编号的情况。
2、交换置换:实现二进制地址编号中第0位位值不同的输入端和输出端之间的连接。
编号0二进制为0000,第0位由0变为1,连接编号0001
编号1二进制为0001,第0位由1变为0,连接编号0000
交换置换就像编鞋带一样,使处理机奇偶相互交叉。
3、方体(cube)置换:实现二进制地址编号中第k位位值不同的输入端和输出端之间的连接。
以k=3为例:
编号0二进制为0000,第3位由0变为1,连接编号1000
编号8二进制为1000,第3位由1变为0,连接编号0000
注意k的值是从0开始计算的,不要找错位。
4、均匀洗牌(shuffle)置换:将输入端二进制地址循环左移一位,得到对应的输出端二进制地址。
编号1二进制为0001,循环左移一位,连接编号1000
编号7二进制为0111,循环左移一位,连接编号1110
5、蝶式置换:将输入端二进制的最高位和最低位互换位置,得到对应的输出端二进制地址。
编号1二进制为0001,最高位和最低位互换,连接编号1000
编号7二进制为0111,最高位和最低位互换,连接编号1110
6、位序颠倒置换:将输入端二进制地址的位序颠倒,得到对应的输出端二进制地址。
编号1二进制为0001,位序颠倒,连接编号1000
编号7二进制为0111,位序颠倒,连接编号1110
有时候各种置换方式的效果是一样的。