代码随想录第十二天| 226.翻转二叉树、101. 对称二叉树、104.二叉树的最大深度、559. N 叉树的最大深度、111.二叉树的最小深度

226.翻转二叉树

思路:交换每个节点的左右孩子即可,使用前序遍历和后序遍历比较好。
题解:
递归法前序遍历:

class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if (root == nullptr) return root;
        swap(root->left, root->right);
        invertTree(root->left);
        invertTree(root->right);
        return root;
    }
};

统一迭代法前序遍历

class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        stack<TreeNode*> st;
        if (root == nullptr) return root;
        st.push(root);
        while(!st.empty())
        {
            TreeNode *node = st.top();
            if (node != nullptr)
            {
                st.pop();
                if (node->right) st.push(node->right);
                if (node->left) st.push(node->left);
                st.push(node);
                st.push(nullptr);
            }
            else
            {
                st.pop();
                node = st.top();
                swap(node->left, node->right);
                st.pop();
            }
        }
        return root;
    }
};

层序迭代:

class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != nullptr) que.push(root);
        while(!que.empty())
        {
            TreeNode* node = que.front();
            swap(node->left, node->right);
            que.pop();
            if (node->left) que.push(node->left);
            if (node->right) que.push(node->right);
        }
        return root;
    }
};

101. 对称二叉树

思路:采用后序遍历,对比左右子树。
题解:
递归法后序遍历:

class Solution {
public:
    bool cmp(TreeNode* left, TreeNode* right)
    {
        if (left == nullptr && right != nullptr) return false;
        else if (left != nullptr && right == nullptr) return false;
        else if (left == nullptr && right == nullptr) return true;
        else if (left->val != right->val) return false;

        return cmp(left->left, right->right) && cmp(left->right, right->left);
    }
    bool isSymmetric(TreeNode* root) {
        if (root == nullptr) return true;
        return cmp(root->left, root->right);
    }
};

迭代法:

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        queue<TreeNode*> que;
        if (root == nullptr) return true;
        que.push(root->left);
        que.push(root->right);
        while(!que.empty())
        {
            TreeNode *l = que.front();
            que.pop();
            TreeNode *r = que.front();
            que.pop();
            if (!l && !r) continue;
            if (!l || !r || l->val != r->val) return false;
            que.push(l->left);
            que.push(r->right);
            que.push(l->right);
            que.push(r->left);
        }
        return true;
    }
};

104.二叉树的最大深度

思路:前序遍历求树的最大深度,后序遍历求根节点的高度(和树的最大深度相等),层序遍历的话是纯模板题。
题解:
层序遍历:

class Solution {
public:
    int maxDepth(TreeNode* root) {
        queue<TreeNode*> que;
        int res{0};
        if(root != nullptr) que.push(root);
        while(!que.empty())
        {
            int size = que.size();
            ++res;
            for (int i = 0; i < size; ++i)
            {
                TreeNode *node = que.front();
                que.pop();
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return res;
    }
};

递归前序遍历:

class Solution {
private:
    int result = 0;
public:
    void getDepth(TreeNode* node, int depth)
    {
        result = depth > result ? depth : result;
        if (node->left == nullptr && node->right == nullptr) return;
        if (node->left)
        {
            ++depth;
            getDepth(node->left, depth);
            --depth;
        }
        if (node->right)
        {
            ++depth;
            getDepth(node->right, depth);
            --depth;
        }
        return;
    }
    int maxDepth(TreeNode* root) {
        if (root == nullptr) return 0;
        getDepth(root, 1);
        return result;
    }
};

递归后序遍历:

class Solution {
public:
    int maxDepth(TreeNode* root) {
        if (root == nullptr) return 0;
        return 1 + max(maxDepth(root->left), maxDepth(root->right));
    }
};

559. N 叉树的最大深度

思路:和二叉树的最大深度相同。
题解:
层序遍历:

class Solution {
public:
    int maxDepth(Node* root) {
        queue<Node*> que;
        int res{0};
        if(root != nullptr) que.push(root);
        while(!que.empty())
        {
            int size = que.size();
            ++res;
            for (int i = 0; i < size; ++i)
            {
                Node *node = que.front();
                que.pop();
                for (auto it : node->children)
                    que.push(it);
            }
        }
        return res;
    }
};

递归前序遍历:

class Solution {
private:
    int result{0};
public:
    void getDepth(Node *node, int depth)
    {
        result = depth > result ? depth : result;
        if (node->children.empty()) return;
        for (auto it : node->children)
        {
            ++depth;
            getDepth(it, depth);
            --depth;
        }
        return;
    }
    int maxDepth(Node* root) {
        if (root == nullptr) return 0;
        getDepth(root, 1);
        return result;
    }
};

递归后序遍历:

class Solution {
public:
    int getheight(Node *root)
    {
        if (root == nullptr) return 0;
        int depth = 0;
        for (auto it : root->children)
            depth = max(getheight(it), depth);
        return 1 + depth;
    }

    int maxDepth(Node* root) {
        return getheight(root);
    }
};

111.二叉树的最小深度

思路:层序依然是模板题,可以从前序遍历和后序遍历来考虑。
题解:
层序遍历:

class Solution {
public:
    int minDepth(TreeNode* root) {
        queue<TreeNode*> que;
        int depth{0};
        if (root != nullptr) que.push(root);
        while(!que.empty())
        {
            int size = que.size();
            ++depth;
            for (int i = 0; i < size; ++i)
            {
                TreeNode* node = que.front();
                que.pop();
                if (!node->left && !node->right) return depth;
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return depth;
    }
};

前序遍历:

class Solution {
public:
    int result{INT_MAX};
    void getDepth(TreeNode* node, int depth)
    {
        if (node == nullptr) return;
        if (node->left == nullptr && node->right == nullptr)
            result = depth < result ? depth : result;
        if (node -> left)
        {
            ++depth;
            getDepth(node->left, depth);
            --depth;
        }
        if (node -> right)
        {
            ++depth;
            getDepth(node->right, depth);
            --depth;
        }
        return;
    }
    int minDepth(TreeNode* root) {
        if (root == nullptr) return 0;
        getDepth(root, 1);
        return result;
    }
};

后序遍历:

class Solution {
public:
    int minDepth(TreeNode* root) {
        if (root == nullptr) 
            return 0;
        if (root->left == nullptr && root -> right == nullptr) 
            return 1;
        if (root->left == nullptr) 
            return 1 + minDepth(root->right);
        if (root -> right == nullptr) 
            return 1 + minDepth(root->left);
        return 1 + min(minDepth(root->left), minDepth(root->right));
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值