代码随想录第十三天|110.平衡二叉树、257. 二叉树的所有路径、404.左叶子之和、222.完全二叉树的节点个数

110.平衡二叉树

思路:平衡二叉树是所有节点的左右子树深度相差小于1,可以理解为左右节点的高度相差小于1。求节点深度可以使用前序遍历和后序遍历,但后序遍历好写一点。可以在递归过程中就判断是否为平衡二叉树,也可以单纯使用递归求节点高度,然后在遍历二叉树节点时候进行判断。
题解:
递归法后序遍历:

class Solution {
public:
    int getdepth(TreeNode *node)
    {
        if (node == nullptr) return 0;
        int leftdepth =  getdepth(node->left);
        int rightdepth = getdepth(node->right);
        if (leftdepth == -1) return -1;
        if (rightdepth == -1) return -1;
        if (abs(leftdepth - rightdepth) > 1)
            return -1;
        else
            return 1 + max(leftdepth, rightdepth);
    }
    bool isBalanced(TreeNode* root) {
        return getdepth(root) == -1 ? false : true;
    }
};

递归法后序遍历求节点深度,前序遍历二叉树进行判断:

class Solution {
public:
    int getdepth(TreeNode *node)
    {
        if (node == nullptr) return 0;
        int leftdepth =  getdepth(node->left);
        int rightdepth = getdepth(node->right);
        return 1 + max(leftdepth, rightdepth);
    }
    bool isBalanced(TreeNode* root) {
        stack<TreeNode*> st;
        if (root == nullptr) return true;
        st.push(root);
        while(!st.empty())
        {
            TreeNode *node = st.top();
            st.pop();
            int leftheight = getdepth(node->left);
            int rightheight = getdepth(node->right);
            if (abs(leftheight - rightheight) > 1)
                return false;
            if (node->right) st.push(node->right);
            if (node->left) st.push(node->left);
        }
        return true;
    }
};

257. 二叉树的所有路径

思路:处理节点和访问节点相同,使用前序遍历,方便从根节点到子节点。
题解:
递归法前序遍历:

class Solution {
public:
    void traversal(TreeNode *node, vector<int>&path, vector<string>&res)
    {
        path.push_back(node->val);
        if (node->left==nullptr && node->right==nullptr)
        {
            string spath;
            for (int i=0; i < path.size()-1; ++i)
            {
                spath += to_string(path[i]);
                spath += "->";
            }
            spath += to_string(path[path.size()-1]);
            res.push_back(spath);
            return;
        }
        if (node->left)
        {
            traversal(node->left, path, res);
            path.pop_back();
        }
        if (node->right)
        {
            traversal(node->right, path, res);
            path.pop_back();
        }
    }
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<int> path;
        vector<string> res;
        traversal(root, path, res);
        return res;
    }
};

迭代法前序遍历:

class Solution {
public:
    vector<string> binaryTreePaths(TreeNode* root) {
        stack<TreeNode*> st;
        stack<string> stpath;
        vector<string> res;
        if (root == nullptr) return res;
        st.push(root);
        stpath.push(to_string(root->val));
        while(!st.empty())
        {
            TreeNode* node = st.top();
            st.pop();
            string path = stpath.top();
            stpath.pop();
            if (!node->left && !node->right) res.push_back(path);
            if (node->right)
            {
                st.push(node->right);
                stpath.push(path + "->" + to_string(node->right->val));
            }
            if (node->left)
            {
                st.push(node->left);
                stpath.push(path + "->" + to_string(node->left->val));
            }
        }
        return res;
    }
};

404.左叶子之和

思路:一个节点的左节点不为空,左节点的左右节点为空,则该节点的左节点为左叶子节点。递归的话,因为需要对返回值进行累加,所以使用后序遍历,而遍历的情况,前中后序都可以,在遍历时判断处理节点是否满足左叶子节点条件即可。
题解:
递归后序遍历:

class Solution {
public:
    int sumOfLeftLeaves(TreeNode* root) {
        if (root == nullptr) return 0;
        if (root->left != nullptr && root->left->left == nullptr && root->left->right == nullptr)
            return root->left->val + sumOfLeftLeaves(root->right);
        return  sumOfLeftLeaves(root->left) + sumOfLeftLeaves(root->right);
    }
};

迭代前序遍历:

class Solution {
public:
    int sumOfLeftLeaves(TreeNode* root) {
        int res{0};
        stack<TreeNode*> st;
        if (!root) return res;
        st.push(root);
        while(!st.empty())
        {
            TreeNode* node = st.top();
            st.pop();
            if (node->left && !node->left->left && !node->left->right)
                res += node->left->val;
            if (node->right) st.push(node->right);
            if (node->left) st.push(node->left);
        }
        return res;
    }
};

222.完全二叉树的节点个数

思路:不利用完全二叉树特性,即求普通二叉树的节点个树可以考虑递归后序遍历,层序遍历求节点个数。利用完全二叉树特性,则可以利用必有子树是满二叉树的特性减少遍历的节点数。
题解:
普通二叉树递归后序遍历:

class Solution {
public:
    int countNodes(TreeNode* root) {
        if (!root) return 0;
        return 1 + countNodes(root->left) + countNodes(root->right);
    }
};

普通二叉树层序遍历:

class Solution {
public:
    int countNodes(TreeNode* root) {
        queue<TreeNode*> que;
        int res{0};
        if (!root) return res;
        que.push(root);
        while(!que.empty())
        {
            TreeNode* node = que.front();
            que.pop();
            ++res;
            if (node->left) que.push(node->left);
            if (node->right) que.push(node->right);
        } 
        return res;
    }
};

完全二叉树递归后序遍历:

class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == nullptr) return 0;
        TreeNode *left = root -> left;
        TreeNode *right = root -> right;
        int leftlen = 0;
        int rightlen = 0;
        while (left)
        {
            left = left -> left;
            ++leftlen;
        }
        while (right)
        {
            right = right -> right;
            ++rightlen;
        }
        if (leftlen == rightlen)
            return (2 << leftlen) - 1;
        return 1 + countNodes(root->left) + countNodes(root->right);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值