[DP][拉格朗日插值][生成函数] SRM 629 Div1 Hard CandyDrawing

Solution

题目的意思就是要求

[xk]i=0n(ix+1)

fn,k=[xk]ni=0(ix+1) ,则有
fn,kfn,kfn1,k==fn1,k+nfn1,k1nfn1,k1
n 看作变量,那么f,k就是一个 2k 次的多项式。暴力求出前 2k 个点值,拉格朗日插值就好了。
因为前面DP复杂度是 O(n2) ,所以复杂度还是得 O(n2) 。。。
好像还有分治+FFT的做法???
真难过刚开始打 O(n) 的插值还打错了QAQ。。

// BEGIN CUT HERE

// END CUT HERE
#line 5 "CandyDrawing.cpp"
#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N = 6060;

int fac[N], inv[N];
int pre[N], suf[N];
int f[N][N];
int g[N];
int n, k, MOD, ans;

inline void Add(int &x, int a) {
    x = ((ll)x + a) % MOD;
}
inline int Pow(int a, int b) {
    int c = 1;
    while (b) {
        if (b & 1) c = (ll)c * a % MOD;
        b >>= 1; a = (ll)a * a % MOD;
    }
    return c;
}
inline int Inv(int x) {
    return Pow(x, MOD - 2);
}

class CandyDrawing {  
public:
    inline void Pre(int n) {
        inv[1] = 1;
        for (int i = 2; i <= n; i++)
            inv[i] = (ll)(MOD - MOD / i) * inv[MOD % i] % MOD;
    }
    inline int sgn(int x) {
        return (x & 1) ? MOD - 1 : 1;
    }
/*  inline int Inter(int *f, int k, int x) {
        pre[0] = suf[0] = 1;
        for (int i = 1; i <= k; i++)
            pre[i] = ((ll)x - i + MOD) * pre[i - 1] % MOD;
        for (int i = 1; i <= k; i++)
            suf[i] = ((ll)x - k + i - 1 + MOD) * suf[i - 1] % MOD;
        int res = 0;
        for (int i = 0; i <= k; i++) {
            int s = (ll)pre[i - 1] * suf[k - i] % MOD * f[i] % MOD,
                t = (ll)inv[i - 1] * inv[k - i] % MOD;
            Add(res, (ll)s * t % MOD * sgn(k - i) % MOD);
        }
        return res;
    }*/
    inline int Inter1(int *f, int k, int x) {
        int res = 0;
        for (int j = 0; j <= k; j++) {
            int pro = 1;
            for (int i = 0; i <= k; i++) {
                if (i < j) pro = (ll)pro * inv[j - i] % MOD * (x - i + MOD) % MOD;
                if (i > j) pro = (ll)pro * -inv[i - j] % MOD * (x - i + MOD) % MOD;
            }
            res = ((ll)pro * f[j] + res) % MOD;
        }
        return ((ll)res + MOD) % MOD;
    }
    int findProbability(int _N, int _K, int _MOD) {
        n = _N; k = _K; MOD = _MOD; Pre(k * 2);
        f[0][0] = 1;
        for (int i = 1; i <= k * 2; i++) {
            f[i][0] = 1;
            for (int j = 1; j <= i; j++)
                f[i][j] = ((ll)i * f[i - 1][j - 1] + f[i - 1][j]) % MOD;
        }
        for (int i = 0; i <= k * 2; i++) g[i] = f[i][k];
        return Inter1(g, k * 2, n);
    }

// BEGIN CUT HERE
    public:
    void run_test(int Case) { if ((Case == -1) || (Case == 0)) test_case_0(); if ((Case == -1) || (Case == 1)) test_case_1(); if ((Case == -1) || (Case == 2)) test_case_2(); if ((Case == -1) || (Case == 3)) test_case_3(); }
    private:
    template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
    void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
    void test_case_0() { int Arg0 = 2; int Arg1 = 1; int Arg2 = 1000000007; int Arg3 = 3; verify_case(0, Arg3, findProbability(Arg0, Arg1, Arg2)); }
    void test_case_1() { int Arg0 = 3; int Arg1 = 2; int Arg2 = 1000000007; int Arg3 = 11; verify_case(1, Arg3, findProbability(Arg0, Arg1, Arg2)); }
    void test_case_2() { int Arg0 = 10; int Arg1 = 4; int Arg2 = 1000000007; int Arg3 = 157773; verify_case(2, Arg3, findProbability(Arg0, Arg1, Arg2)); }
    void test_case_3() { int Arg0 = 1000000000; int Arg1 = 1000; int Arg2 = 1000000009; int Arg3 = 629516825; verify_case(3, Arg3, findProbability(Arg0, Arg1, Arg2)); }

// END CUT HERE

};

// BEGIN CUT HERE
int main(void) {
    CandyDrawing ___test;
    ___test.run_test(-1);
    system("pause");
}
// END CUT HERE
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值