N皇后问题

链接:http://acm.hust.edu.cn/vjudge/problem/33634/origin

题目:在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。

题意:..

分析:首先这是一道经典的dfs,或者回溯递归题,当年在数据结构的实验上有做过。只不过,当时对时间空间没有那么多的要求,结果照搬过来就错了。主要原因是多组测试,所以最好的办法是预处理出所有的答案,再去以查询的方式解决。(比较好的方法是用一维的数组来记录棋盘,因为每行每列只允许放一个棋子。)


当然还有一些人是这么做的。。。。。刚刚入门的我可是叹为观止。。


题解:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <cstring>
#include <functional>
#include <cmath>
using namespace std;
int n;
int num;
int s[20];
int ans[15];
void dfs(int nx,int ny)
{
	int i;
	for(i=0;i<nx;i++)
		if(s[i]==ny||abs(s[i]-ny)==abs(nx-i))
			return;
	if(nx==n-1)
	{
		num++;
		return;
	}
	s[nx]=ny;
	for(i=0;i<n;i++)
		dfs(nx+1,i);
}
int main()
{
	//freopen("in.txt","r",stdin);
	for(int j=1;j<=10;j++)
	{
		num=0;
		n=j;
		memset(s,0,sizeof(s));
		for(int i=0;i<n;i++)
			dfs(0,i);
		ans[j]=num;
	}
	while(~scanf("%d",&n))
	{
		if(n==0)
			break;
		printf("%d\n",ans[n]);
	}
	return 0;
}

### 回答1: 这是一个关于在 $n \times n$ 的棋盘放置 $n$ 个皇后的问题,其中皇后不能相互攻击,即在同一行、同一列或同一对角线上。 有几种经典的解法可以解决这个问题,下面介绍两种: 1. 回溯算法:从第一行开始,每次在下一行中选择一个合法的位置放置皇后,并继续递归到下一行。如果到了最后一行仍然能够放置,则得到了一个解。如果无法放置,则需要回溯到上一行重新选择位置。 2. 位运算优化的回溯算法:对于每一行,使用一个二进制数表示该行可以放置皇后的位置。在递归过程中,用三个二进制数分别表示列、左斜线和右斜线上已经有皇后的位置。每次尝试在下一行中放置皇后时,通过位运算快速判断该位置是否合法,并更新三个二进制数。如果到了最后一行仍然能够放置,则得到了一个解。如果无法放置,则需要回溯到上一行重新选择位置。 以上两种方法都是经典解法,具有较高的效率和普适性。在实际应用中,可以根据具体需求进行选择和优化。 ### 回答2: 解决这个问题可以采用回溯算法。从第一行开始,尝试将皇后放在每个位置上,然后递归调用下一行。如果某个位置不能放置皇后(因为该位置的同行、同列或同斜线已经有其他皇后了),就回溯到上一行并尝试下一个位置。如果所有行都被尝试过了,则找到一种解法,计数器加一。整个过程可以用一个数列来表示棋盘,数列的索引表示列数,数列中的值表示该列上的皇后的行数。 具体的,我们可以定义一个列表`cols`,其中`cols[i]`表示第i列上的皇后放在了哪一行。每次递归时,从上到下按行数尝试在第i列上放置皇后。若成功则递归求解下一行,否则尝试在该列的下一行重新放置皇后。若所有行都被尝试过,则回溯到上一行。 代码如下: ```python def solveNQueens(n: int) -> int: def dfs(cols, row): if row == n: # 找到一种合法解法 nonlocal count count += 1 else: for i in range(n): if check(cols, row, i): cols[row] = i dfs(cols, row + 1) def check(cols, row, col): for i in range(row): if cols[i] == col or abs(cols[i] - col) == row - i: # 同列 或 同对角线(斜率为±1) return False return True cols = [-1] * n count = 0 dfs(cols, 0) return count ``` 其中`check()`函数用于检查在第`row`行第`col`列放置皇后是否合法。 该算法的时间复杂度为$O(n^n)$,因为每一行有n种可能的放置方法,总共有n行。空间复杂度为$O(n)$,因为需要一个长度为n的列表来维护棋盘。 可以通过调用`solveNQueens(n)`函数来求解n皇后的解法数量。 ### 回答3: n皇后问题,是计算机领域中的著名问题之一。这个问题的目标是在n*n大小的棋盘放置n个皇后,使得它们相互之间无法攻击到对方。 为了解决这个问题,需要一种算法来找到所有可能的合法解。回溯算法是一种非常常见的解决方案,也是解决n皇后问题的经典算法。 回溯算法的基本思路是,在搜寻所有可能的解时,如果发现了一个不符合要求的解,就返回前一个状态,并继续搜索其他可能的解,直到找到符合要求的解或者结束搜索。 对于n皇后问题,可以使用回溯算法来找到所有合法解,具体步骤如下: 1. 将棋盘初始化为空,即没有皇后。 2. 从第一列开始,依次考虑每一个位置(从上到下)是否可以放置皇后。如果可以,就将皇后放到这个位置上,并进入下一列进行搜索。 3. 如果在某一列上找不到位置可以放置皇后,就返回前一列,并尝试下一个位置。 4. 如果在最后一列找到了合法解,就记录这个解,并返回前一列,继续搜索其他解。 一旦找到所有的合法解,就可以计数了。答案就是合法解的数量。 这个算法的复杂度取决于搜索解空间的大小,即所有可能的解的数量。由于每个皇后只能放在一行,所以每行只能放一个皇后,因此解空间的大小为n^n。但是,在搜索过程中,有很多不符合要求的解会被排除掉,这样可以大大减少搜索的时间。 总的来说,回溯算法是一种相对高效的解决n皇后问题的方法。虽然算法的时间复杂度很高,但是在实际应用中,由于存在很多优化,所以算法仍然可以快速有效地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值