链接:http://acm.hust.edu.cn/vjudge/problem/33634/origin
题目:在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
题意:..
题解:
题目:在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
题意:..
分析:首先这是一道经典的dfs,或者回溯递归题,当年在数据结构的实验上有做过。只不过,当时对时间空间没有那么多的要求,结果照搬过来就错了。主要原因是多组测试,所以最好的办法是预处理出所有的答案,再去以查询的方式解决。(比较好的方法是用一维的数组来记录棋盘,因为每行每列只允许放一个棋子。)
当然还有一些人是这么做的。。。。。刚刚入门的我可是叹为观止。。
题解:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <cstring>
#include <functional>
#include <cmath>
using namespace std;
int n;
int num;
int s[20];
int ans[15];
void dfs(int nx,int ny)
{
int i;
for(i=0;i<nx;i++)
if(s[i]==ny||abs(s[i]-ny)==abs(nx-i))
return;
if(nx==n-1)
{
num++;
return;
}
s[nx]=ny;
for(i=0;i<n;i++)
dfs(nx+1,i);
}
int main()
{
//freopen("in.txt","r",stdin);
for(int j=1;j<=10;j++)
{
num=0;
n=j;
memset(s,0,sizeof(s));
for(int i=0;i<n;i++)
dfs(0,i);
ans[j]=num;
}
while(~scanf("%d",&n))
{
if(n==0)
break;
printf("%d\n",ans[n]);
}
return 0;
}