字符串的排列
输入一个字符串,按字典序打印出该字符串中字符的所有排列。例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba。 结果请按字母顺序输出。
import java.util.ArrayList;
import java.util.Collections;
public class Solution {
ArrayList<String> result=new ArrayList<String>();
public ArrayList<String> Permutation(String str) {
if(str==null||str.length()==0)
return result;
per(str.toCharArray(),0);
Collections.sort(result);
return result;
}
public void per(char[] cc,int start){
if(start==cc.length-1)
result.add(new String(cc));
else{
for(int i=start;i<cc.length;i++){
if(i!=start&&cc[i]==cc[start])
continue;
else{
swap(cc,i,start);
per(cc,start+1);
swap(cc,start,i); //这里不可缺少
}
}
}
}
public void swap(char[] str,int index1,int index2){
if(index1!=index2){
char temp=str[index1];
str[index1]=str[index2];
str[index2]=temp;
}
}
}
旋转字符串
题目描述
给定一个字符串,要求把字符串前面的若干个字符移动到字符串的尾部,如把字符串“abcdef”前面的2个字符’a’和’b’移动到字符串的尾部,使得原字符串变成字符串“cdefab”。请写一个函数完成此功能,要求对长度为n的字符串操作的时间复杂度为 O(n),空间复杂度为 O(1)。
分析与解法
解法一:暴力移位法
初看此题,可能最先想到的方法是按照题目所要求的,把需要移动的字符一个一个地移动到字符串的尾部,如此我们可以实现一个函数 LeftShiftOne(char* s, int n) ,以完成移动一个字符到字符串尾部的功能,代码如下所示:
void LeftShiftOne(char* s, int n)
{
char t = s[0]; //保存第一个字符
for (int i = 1; i < n; i++)
{
s[i - 1] = s[i];
}
s[n - 1] = t;
}
因此,若要把字符串开头的m个字符移动到字符串的尾部,则可以如下操作:
void LeftRotateString(char* s, int n, int m)
{
while (m--)
{
LeftShiftOne(s, n);
}
}
下面,我们来分析一下这种方法的时间复杂度和空间复杂度。
针对长度为n的字符串来说,假设需要移动m个字符到字符串的尾部,那么总共需要 m*n 次操作,同时设立一个变量保存第一个字符,如此,时间复杂度为O(m * n),空间复杂度为O(1),空间复杂度符合题目要求,但时间复杂度不符合,所以,我们得需要寻找其他更好的办法来降低时间复杂度。
解法二:三步反转法
对于这个问题,换一个角度思考一下。
将一个字符串分成X和Y两个部分,在每部分字符串上定义反转操作,如X^T,即把X的所有字符反转(如,X=”abc”,那么X^T=”cba”),那么就得到下面的结论:(X^TY^T)^T=YX,显然就解决了字符串的反转问题。
例如,字符串 abcdef ,若要让def翻转到abc的前头,只要按照下述3个步骤操作即可:
首先将原字符串分为两个部分,即X:abc,Y:def;
将X反转,X->X^T,即得:abc->cba;将Y反转,Y->Y^T,即得:def->fed。
反转上述步骤得到的结果字符串X^TY^T,即反转字符串cbafed的两部分(cba和fed)给予反转,cbafed得到defabc,形式化表示为(X^TY^T)^T=YX,这就实现了整个反转。
如下图所示:
代码则可以这么写:
void ReverseString(char* s,int from,int to)
{
while (from < to)
{
char t = s[from];
s[from++] = s[to];
s[to--] = t;
}
}
void LeftRotateString(char* s,int n,int m)
{
m %= n; //若要左移动大于n位,那么和%n 是等价的
ReverseString(s, 0, m - 1); //反转[0..m - 1],套用到上面举的例子中,就是X->X^T,即 abc->cba
ReverseString(s, m, n - 1); //反转[m..n - 1],例如Y->Y^T,即 def->fed
ReverseString(s, 0, n - 1); //反转[0..n - 1],即如整个反转,(X^TY^T)^T=YX,即 cbafed->defabc。
}
这就是把字符串分为两个部分,先各自反转再整体反转的方法,时间复杂度为O(n),空间复杂度为O(1),达到了题目的要求。
举一反三
1、链表翻转。给出一个链表和一个数k,比如,链表为1→2→3→4→5→6,k=2,则翻转后2→1→6→5→4→3,若k=3,翻转后3→2→1→6→5→4,若k=4,翻转后4→3→2→1→6→5,用程序实现。
2、编写程序,在原字符串中把字符串尾部的m个字符移动到字符串的头部,要求:长度为n的字符串操作时间复杂度为O(n),空间复杂度为O(1)。 例如,原字符串为”Ilovebaofeng”,m=7,输出结果为:”baofengIlove”。
3、单词翻转。输入一个英文句子,翻转句子中单词的顺序,但单词内字符的顺序不变,句子中单词以空格符隔开。为简单起见,标点符号和普通字母一样处理。例如,输入“I am a student.”,则输出“student. a am I”。
字符串包含
题目描述
给定两个分别由字母组成的字符串A和字符串B,字符串B的长度比字符串A短。请问,如何最快地判断字符串B中所有字母是否都在字符串A里?
为了简单起见,我们规定输入的字符串只包含大写英文字母,请实现函数bool StringContains(string &A, string &B)
比如,如果是下面两个字符串:
String 1:ABCD
String 2:BAD
答案是true,即String2里的字母在String1里也都有,或者说String2是String1的真子集。
如果是下面两个字符串:
String 1:ABCD
String 2:BCE
答案是false,因为字符串String2里的E字母不在字符串String1里。
同时,如果string1:ABCD,string 2:AA,同样返回true。
解法四:HashMap
如果面试官继续追问,还有没有更好的办法呢?计数排序?除了计数排序呢?
事实上,可以先把长字符串a中的所有字符都放入一个Hashtable里,然后轮询短字符串b,看短字符串b的每个字符是否都在Hashtable里,如果都存在,说明长字符串a包含短字符串b,否则,说明不包含。
再进一步,我们可以对字符串A,用位运算(26bit整数表示)计算出一个“签名”,再用B中的字符到A里面进行查找。
// “最好的方法”,时间复杂度O(n + m),空间复杂度O(1)
bool StringContain(string &a,string &b)
{
int hash = 0;
for (int i = 0; i < a.length(); ++i)
{
hash |= (1 << (a[i] - 'A'));
}
for (int i = 0; i < b.length(); ++i)
{
if ((hash & (1 << (b[i] - 'A'))) == 0)
{
return false;
}
}
return true;
}
这个方法的实质是用一个整数代替了hashtable,空间复杂度为O(1),时间复杂度还是O(n + m)。
举一反三
1、变位词
如果两个字符串的字符一样,但是顺序不一样,被认为是兄弟字符串,比如bad和adb即为兄弟字符串,现提供一个字符串,如何在字典中迅速找到它的兄弟字符串,请描述数据结构和查询过程。
回文判断
题目描述
回文,英文palindrome,指一个顺着读和反过来读都一样的字符串,比如madam、我爱我,这样的短句在智力性、趣味性和艺术性上都颇有特色,中国历史上还有很多有趣的回文诗。
那么,我们的第一个问题就是:判断一个字串是否是回文?
分析与解法
回文判断是一类典型的问题,尤其是与字符串结合后呈现出多姿多彩,在实际中使用也比较广泛,而且也是面试题中的常客,所以本节就结合几个典型的例子来体味下回文之趣。
解法一
同时从字符串头尾开始向中间扫描字串,如果所有字符都一样,那么这个字串就是一个回文。采用这种方法的话,我们只需要维护头部和尾部两个扫描指针即可。
代码如下::
bool IsPalindrome(const char *s, int n)
{
//非法输入
if (s == NULL || n < 1)
return false;
char *front, *back;
//初始化头指针和尾指针
front = s;
back = s + n - 1;
while (front < back)
{
if (*front != *back)
return false; // 不是回文,立即返回
++front;
--back;
}
return true; // 是回文
}
这是一个直白且效率不错的实现,时间复杂度:O(n),空间复杂度:O(1)。