算法学习
vigor_lee
这个作者很懒,什么都没留下…
展开
-
广度优先搜索
广度优先搜索广度优先搜索(Breadth First Search)也叫宽度优先搜索,是指从图中的某个结点出发,沿着和这个点相连的边向前走,去寻找和这个点距离为 1 的所有其他点。只有当和起始点距离为 1 的所有点都被搜索完毕,才开始搜索和起始点距离为 2 的点。当所有和起始点距离为 2 的点都被搜索完了,才开始搜索和起始点距离为 3 的点,如此类推。我们用结点上的数字表示结点的 ID,用虚线表示遍历前进的方向,用结点边上的数字表示该结点在广度优先搜索中被访问的顺序。从这个图中,你有没有发现,广度优先搜转载 2020-09-21 09:51:04 · 119 阅读 · 0 评论 -
SVM之非线性分类
SVM 的英文叫 Support Vector Machine,中文名为支持向量机。它是常见的一种分类方法,在机器学习中,SVM 是有监督的学习模型。什么是有监督的学习模型呢?它指的是我们需要事先对数据打上分类标签,这样机器就知道这个数据属于哪个分类。同样无监督学习,就是数据没有被打上分类标签,这可能是因为我们不具备先验的知识,或者打标签的成本很高。所以我们需要机器代我们部分完成这个工作,比如将数据进行聚类,方便后续人工对每个类进行分析。SVM 作为有监督的学习模型,通常可以帮我们模式识别、分类以及回归分析转载 2020-09-11 15:42:19 · 4357 阅读 · 0 评论 -
决策树之CART 算法
我们可以把决策树分为 ID3 算法、C4.5 算法和 CART 算法。今天我来带你学习 CART 算法。CART 算法,英文全称叫做 Classification And Regression Tree,中文叫做分类回归树。ID3 和 C4.5 算法可以生成二叉树或多叉树,而 CART 只支持二叉树。同时 CART 决策树比较特殊,既可以作分类树,又可以作回归树。什么是分类树,什么是回归树呢?我用下面的训练数据举个例子,你能看到不同职业的人,他们的年龄不同,学习时间也不同。如果我构造了一棵决策树,想要基于转载 2020-09-10 11:05:58 · 5862 阅读 · 1 评论 -
决策树
决策树那点事一棵典型的决策树。我们在做决策树的时候,会经历两个阶段:构造和剪枝。构造就是生成一棵完整的决策树。简单来说,构造的过程就是选择什么属性作为节点的过程,那么在构造过程中,会存在三种节点:根节点:就是树的最顶端,最开始的那个节点。在上图中,“天气”就是一个根节点;内部节点:就是树中间的那些节点,比如说“温度”、“湿度”、“刮风”;叶节点:就是树最底部的节点,也就是决策结果。节点之间存在父子关系。比如根节点会有子节点,子节点会有子子节点,但是到了叶节点就停止了,叶节点不存在子节点。那么在构造过程转载 2020-09-10 10:35:51 · 132 阅读 · 0 评论 -
拉格朗日求解最优化问题——KKT条件
拉格朗日乘子法————等式约束KKT条件——不等式约束不等式约束条件KKT原创 2020-07-01 11:51:38 · 1269 阅读 · 0 评论 -
迅速了解朴素贝叶斯
贝叶斯法则就是用先验概率和条件概率估计后验概率。而朴素贝叶斯就是多属性分类问题!通过阅读黄申老师的课程,简单记录一下笔记,分享给大家。比如我曾经就和一个小朋友有过这样一段对话:小朋友:黄叔叔,你和我讲讲,什么样的水果才是苹果呀?我:圆形的、绿色的水果。小朋友:那西瓜也是圆形的、绿色的呀?我:嗯……苹果也有可能是黄色或红色的,但西瓜不是。小朋友:那甜橙也是圆形的、黄色的呀?我:好吧,你看到...原创 2020-04-30 10:38:21 · 434 阅读 · 0 评论