转载:用哪種統計分析方式好?(卡方,Anova,T-test, or regression?)

这篇博客澄清了在统计分析中如何选择合适的测试方法,如T-test用于检验两组间差异,Anova用于超过两组的情况,Regression则适用于连续变量或dummy variable。卡方检验关注比例的差异,适用于名义变量。理解这些方法的基本概念和适用条件是关键。
摘要由CSDN通过智能技术生成

 

转载: http://newgenerationresearcher.blogspot.com/2008/08/anovat-test-or-regression.html

 

許多人(包括我自己)在學統計時,總是被這一堆術語搞得頭昏腦脹。每一個分析都聽得清清楚楚,考試也都可以拿高分,但等到自己面對一大堆資料要動手分析時,卻不知道該用哪一種方法。如果你不知道什麼時候要用卡分檢定、T-test、Anova或Regression,但每一項的計算和原理你都清楚,那請你接著往下看,希望本文對你有幫助。
首先要談的是T-test。T檢定主要是檢驗兩組之間是否有差異(當然也有one sample t-test,不過較少使用),所以條件是有兩組只能有兩組。組別是類別變數(categorical variable),像是性別、種族、國籍。如果是連續變數,也可以設一個標準,多少以上是好的,以下是差的,以此來產生類別變數。如果超過兩組,必須用Anova來分析。另外,常犯的錯就是把前、後測是否有顯著差異用T-test來檢定。即使有兩組,前、後測也不是用T-test來檢定的,更別說有人「假裝」把前測當一組,後測當一組,拿來做T檢定。
One-way Anova(單因子變異數分析)是只有一個類別變數當作independent variable࿰

R语言是一种专门用于统计计算和图形展示的开源编程语言,其强大的统计功能使得它在数据分析领域非常受欢迎。以下是使用R语言进行一些常见统计方法分析的一个简单案例: 假设我们要研究的是学生的学习成绩是否与性别有关,我们可以采用以下步骤: 1. **数据准备**:首先导入包含学生成绩(如分数)和性别(分类变量)的数据集。可以使用`read.csv()`函数加载CSV文件。 ```r data <- read.csv("students_scores.csv") ``` 2. **描述性统计**:对学生成绩进行描述性统计,如平均值、标准差等,可以使用`summary()`函数。 ```r summary(data$score) ``` 3. **卡方检验(Chi-squared test)**:通过`chisq.test()`函数检查性别与成绩分布之间是否有显著差异。 ```r gender_score <- table(data$gender, data$score) chisq.test(gender_score) ``` 4. **t检验(T-test)**:如果需要比较男性和女性学生的平均成绩,可以使用`t.test()`,例如两独立样本t检验。 ```r t.test(score ~ gender, data = data, var.equal = TRUE) ``` 5. **方差分析ANOVA)**:如果有多组数据,比如来自不同年级的成绩,可以使用`aov()`进行方差分析。 ```r anova(lm(score ~ grade, data)) ``` 6. **相关分析(Correlation analysis)**:计算成绩与某个因素(如时间投入)的相关系数,使用`cor()`函数。 ```r correlation <- cor(data$score, data$time_spent) correlation ``` 7. **回归分析Regression analysis)**:用`lm()`创建线性模型预测成绩,如预测成绩与学习时间的关系。 ```r model <- lm(score ~ time_spent, data) summary(model) ``` 8. **多元统计分析(Multivariate analysis)**:如果涉及多个自变量,可以使用`lm()`进行多元线性回归或多因素方差分析。 9. **非参数分析(Non-parametric tests)**:对于等级数据或分布未知的数据,可以使用`wilcox.test()`进行秩和检验,如比较两个群体的等级评分。 ```r wilcox.test(rank(data$score[gender == "Male"]), rank(data$score[gender == "Female"])) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值