机器学习
浩south
这个作者很懒,什么都没留下…
展开
-
4. 线性回顾和逻辑回归
什么是线性回归模型 线性模型是机器学习中最基础的模型,许多非线性模型就是在线性模型的基础上引入层级结构或者高维映射得到 线性模型就是试图得到一个通过属性线性组合来进行预测的函数,比如 如何去学得这个模型呢? 假定有数据集 ,其中 , 。 线性模型学的就是参数 w 和 b, 就会把所有的数据都代入到第一个式子中,...原创 2018-10-11 09:50:31 · 420 阅读 · 0 评论 -
1. 决策树与CART
分类决策树模型是一种描述对实例进行分类的树型结构。 算法流程:递归的选取一个最优特征,根据该特征 对训练数据进行分割,使得各个子数据集有一个最好的分类过程。如果这些子集已经能够正确被分类了(就是说所有数据的类别都是一个), 就可以构建叶子节点,把 这些子集对应到叶子节点中去。不然,任然要选取新的最优特征,继续进行分割,直到所有的训练子集全都被正确分类,每个子集都被分配到了叶...原创 2018-10-08 20:11:39 · 489 阅读 · 0 评论 -
2. GBDT
以决策树为基函数的提升方法称为提升树 回归问题的提升树算法 首先训练出一个基函数, 计算这个模型与训练数据的残差 不断的拟合前一个模型得到的残差,从而得到当前模型,知道满足误差要求 分类问题的提升树算法 梯度提升 对于提升树的优化过程,当损失函数为平方损失或者指数损失函数的时候,每一步优化都简单,但是对于一般...原创 2018-10-09 10:27:19 · 121 阅读 · 0 评论 -
3. GBDT XGboost Lightgbm优缺点
XGboost VS GBDT 传统的GBDT是以CART树为基分类器,XGboost还支持线性分类器 GBDT只用到了一阶导的信息,XGboost对代价函数进行了二阶泰勒展开,得到一阶导和二阶导 XGboost在代价函数中加入了正则项来控制模型的复杂度,可以防止过拟合 XGboost工具支持并行 XGboost会在完成一次迭代之后,将叶子节点的权重,...原创 2018-10-09 21:56:14 · 2049 阅读 · 0 评论 -
Backpropagation
原创 2018-11-01 10:57:14 · 118 阅读 · 0 评论 -
TFFRCNN demo模型加载测试
.data-00000-of-00001和.index保存了所有的weights、biases、gradients等变量, .meta保存了图结构, checkpoint文件是个文本文件,里面记录了保存的最新的checkpoint文件以及其它checkpoint文件列表 保存训练模型: 建立一个Saver对象 设置保存模型的个数 : ...原创 2018-11-20 18:08:16 · 368 阅读 · 0 评论 -
YOLO
Advantages: A single convolutional network simultaneously predicts multiple bounding boxes and class probabilities for those boxes YOLO is extremely fast, 45 frames per second Si...原创 2018-11-21 19:55:30 · 172 阅读 · 0 评论 -
图片相似度
背景 When browsing through outfits on clothing sites, looking for a vacation rental on Airbnb, or choosing a pet to adopt, the way something looks is often an important factor in our decision. ...原创 2018-12-12 14:33:21 · 1308 阅读 · 0 评论