077织物污渍瑕疵检测

本文介绍了卷积神经网络(CNN)的各种模型,如AlexNet、DenseNet等,以及目标检测工具如YOLO系列和faster_rcnn,同时涵盖了图像分割技术如Unet和mask-rcnn。文章还提到使用Python和PyQt开发的交互式应用,包括代码下载、训练过程和实际应用场景的演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型

目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等

图像分割一般是Unet、mask-rcnn、PSPnet、yolov5-segment等

代码下载和视频演示地址:

077织物污渍瑕疵检测_哔哩哔哩_bilibili

效果图如下:

 代码所有文件:

运行01makeTxt.py会将data文件下的图片路径及标签保存在txt文本内,

运行02train.py会对图片进行读取并训练模型保存在runs文件下,

运行03detector_photo.py会对单张图片进行预测,

运行04pyqt界面.py可以展示一个pyqt的可视化交互界面,通过点击按钮加载感兴趣的图片进行识别。

注:

下载本代码环境自行安装

如需远程安装环境运行,

或逐行代码注释(小白也能快速掌握理解代码),

或其他需求

都可定制。

其他代码:

001手写汉字识别-单个汉字识别-pyqt可视化交互界面-python代码')
002unet墙体瑕疵检测-python-pytorch')
003水果识别小程序-python-pytorch-mobilenet')
004基于python的hog+svm实现目标检测')
005yolov5_deepsort目标跟踪行人统计数量')
006人流目标跟踪pyqt界面_v5_deepsort')
007CycleGAN_风格迁移+qt界面')
008yolov4口罩目标检测识别')
009中草药识别小程序')
010基于vgg的CT_COVID与CT_NonCOVID二分类识别')
011汉字识别crnn_qt界面')
012yolov3口罩识别检测_是否佩戴规范检测_qt界面')
013yolov3交通牌检测_CCTSDB数据集检测')
014人脸识别打卡签到系统pyqt界面')
015连续的手写中文汉字识别CRNN-多行汉字识别')
016基于CNN卷积网络的人脸识别打卡签到_resnet_mobilenet_efficientnet等')
017手势识别_ui界面')
018深度学习之微表情识别')
019动物识别检测网页版')
020pyqt5实现手写中文数字识别')
021微表情检测系统之疲劳_漫不经心_注意力集中CNN图像版')
022微表情检测系统之疲劳_漫不经心_注意力集中CNN网页版')
023微表情检测系统之疲劳_漫不经心_注意力集中CNN视频流版')
024微表情检测系统之疲劳_漫不经心_注意力集中CNN小程序版')
025目标检测表情检测识别yolov5pyqt_python')
026人脸表情识别网页版')
027目标检测小程序识别表情_人脸识别')
028yolov5视频检测_人脸识别表情识别')
030图像分割批量转化json格式数据集mask或图像轮廓提取')
031蝴蝶品种识别pyqt系统界面')
032基于深度学习的蝴蝶品种识别网页版本')
033基于hwdb手写汉字数据集的识别检测')
034基于深度学习识别hwdb汉字数据集')
035目标检测水下渔网')
036中药饮片识别小程序python卷积网络训练模型识别')
037基于深度学习识别中药饮片数据集网页版')
038基于深度学习的花卉自动识别pyqt界面')
039花卉识别小程序')
040基于svm+hog机器学习的行人检测')
041基于深度学习的扫地机器人检测垃圾')
042基于深度学习的手指静脉识别')
043基于卷积网络的垃圾分类识别检测')
044基于深度学习的鱼类检测')
045基于卷积神经网络的94种矿石识别')
046基于深度学习的杂草检测')
047万能图像处理小助手1.0_python可视化交互按钮图像批量处理数据集扩增等')
048python写字笔画顺序识别检测笔顺是否有误检测')
049万能图像处理小助手1.1_傅里叶变化_椒盐噪声_直方图均衡等图片批量处理')
050通过人工智能技术识别鸟类品种pyqt界面')
051通过人工智能技术识别鸟类品种网页版本')
052基于python的hog+svm实现混凝土裂缝目标检测')
053基于深度学习的混凝土裂缝检测')
054基于python的人脸识别检测')
055基于python目标检测的小程序交互+田间杂草检测')
056基于python的图像识别含评价指标_精确率_召回率_f1score')
057基于python的舌象舌头判断是否病变')
058基于python深度学习AI的车辆车高_车宽_横截面积检测')
059基于python深度学习对人体身高预测')
060基于深度学习的建筑物房屋检测')
061基于深度学习的建筑物高度检测')
062基于深度学习的车牌检测')
063基于深度学习和ocr的车牌识别')
064python深度学习的街头文本检测')
065python的街头文本识别检测')
066基于python深度学习的街头汉字文本检测')
067基于python的街头汉字文本识别检测')
068基于CNN卷积神经网络的大豆叶片形态检测pyqt版本')
069基于CNN卷积神经网络的大豆叶片形态检测小程序版本')
070基于python深度学习的服装图像分类pyqt版本')
071基于卷积神经网络mobilenet的服装图像分类小程序版本')
072基于深度学习的遥感船舶检测')
073基于CNN卷积神经网络的柑橘生长形态检测pyqt版本')
074基于深度学习的柑橘品级分类小程序版本')
075基于深度学习的人脸年龄识别pyqt版本')
076基于python深度学习的人脸年龄识别小程序版本')
077织物污渍瑕疵检测')
078基于python深度学习的水果香蕉品质检测')
079基于深度学习的香蕉成熟度检测小程序版_含10多种模型包括alexnet、DenseNet、DLA
080python农业病虫害检测pyqt版本_含10多种模型包括alexnet、DenseNet、DLA、GoogleN
081基于深度学习的农业病虫害检测小程序版本_含10多种模型包括alexnet、DenseNet、DL
082基于CNN卷积网络的手势识别阿拉伯数字pyqt版本_含10多种模型包括alexnet、DenseNe
083基于深度学习的手势识别小程序版本_含10多种模型包括alexnet、DenseNet、DLA、Goo
084基于CNN卷积神经网络的核桃品质检测_含10多种模型包括alexnet、DenseNet、DLA、Go
085基于目标检测的马路坑洼积水检测')
086基于卷积神经网络的安全带是否佩戴检测')
087基于深度学习的工地安全帽检测')
088基于深度学习的番茄病害检测小程序版本_含10多种模型包括alexnet、DenseNet、DLA
089基于深度学习的小样本数据检测_含10多种模型包括alexnet、DenseNet、DLA、GoogleN
090基于深度学习的车辆速度检测')
091基于深度学习的手写汉字数字识别含10多种模型')
093自动生成xml目标检测框数据集-不用手动标注')
094模版匹配自动标注xml文件')
095行为得分预测-写作行为判断得分')
096cifar10基于卷积神经网络的识别')
097cifar100基于卷积神经网络的识别')
098基于深度学习的语音识别')
099基于深度学习的动物声音分类')
100基于卷积神经网络之鸟鸣识别鸟的种类')
102基于CNN识别环境声音')
101基于CNN的music音乐类别识别')
103基于深度学习的说话情感识别')
104基于深度学习识别是AI生成还是真实图片')
105基于深度学习的手势方向识别含10多种模型')
106python语言含lenet5等多种卷积神经网络中文汉字识别')
107python通过SVM+SIFT实现墙体裂缝检测')
108含resnet等多个模型的手写整句或单个中文汉字识别')
109含ShuffleNet等多个模型的手写中文汉字识别摄像头版')
110基于HWDB数据集识别多行文字含Mobilenet等多个模型')
111简单的轮廓查找检测并排序的demo')
112基于CNN的狗狗情感识别')
113基于机器学习预测学生考试成绩')
114基于python机器学习预测葡萄酒的品质含MLP决策树LGBM随机森林XGBoost等')
115基于python预测牛奶的品质含MLP决策树LGBM随机森林XGBoost等')
116用python来预测螃蟹的年龄')
117nlp自然语言处理-文本情感分类-joy-sadness-anger-fear-love-surprise')
118nlp-中文影评情感分析积极or消极评论')
119基于lstm对中文文本数据分类')
120狗脸识别检测')
121狗脸识别录入检测打卡系统')
122猫脸识别检测')
123基于python深度学习的猫脸识别录入检测系统')
124基于mask-rcnn的图像分割算法检测森林区域')
125基于mask-rcnn检测猫狗')
126基于deeplabv3+图像分割检测墙体裂缝')
127基于python深度学习识别30种乐器')
128基于深度学习的根据音频识别乐器')
129基于FCN图像分割算法检测火焰_数据集json转mask')
130基于PSPnet语义分割算法的道路裂缝检测')
131可用于深度学习系统交互的pyqt可视化界面20例')
132基于深度学习的识别+Qt界面之叶子疾病检测')
133基于yolov3目标检测苹果')
134通过Qt控制python代码运行并将结果显示')
135基于SSD目标检测模型训练VOC数据集中的行人图片')
136免安装环境之基于深度学习训练自己的数据集识别检测')
137免安装环境之基于resnet的10多种水果训练识别')
138基于yolov4目标检测的蔬菜检测含数据集')
139不用安装环境即可训练中药饮片数据集+识别检测')
140不用安装python深度学习环境也能进行岩石数据集的')
141基于CNN对是否是大黄蜂识别-无需安装python-pytorch')
142基于SegNet图像分割算法的积水区域检测识别')
143基于faster-rcnn目标检测蜜蜂bee')
144基于CNN的水果蔬菜识别-不用安装环境下载即可运行')
145基于python目标检测的漂浮垃圾检测')
146基于yolox的火灾和烟雾检测')
147基于CNN卷积网络的可回收垃圾分类-免安装python环境下载即可运行')
148基于yolov7的鱼类检测')
149使用python基于CNN的150种动物识别')
150基于python深度学习的睁眼闭眼检测')
151基于python目标检测的深海鱼fish检测')
152基于python深度学习的检测视频是真人还是照片')
153基于python和opencv实现实时统计米粒计数')

【资源说明】 【博主环境】 *可以在此检测项目基础上增加计数功能,统计当前画面目标总数,或者增加追踪功能,实现追踪计数! python==3.8 pytorch==1.8.1 torchvision==0.9.1 1、搭建环境 建议在anaconda中新建虚拟环境配置,然后在pycharm打开工程,再导入anaconda环境 确保正确安装requirements.txt中的包,可用清华源,下载块! 2、训练好的模型+评估指标曲线+数据集可视化图存放在“ultralytics\yolo\v8\detect\runs\detect”文件夹 3、开始检测识别 a.打开predict.py修改34行模型路径,照葫芦画瓢修改; b.需要检测的图片或视频预先存放在“\ultralytics\assets”文件夹 c.运行predict.py,开始检测检测结果会保存在ultralytics/yolo/v8/detect/runs/detect文件夹下 4、训练自己的模型 a.准备数据集,可参考YOLOv5,拆分为train、val即可,标签为txt b.在yolo\v8\detect\data文件夹下新建.yaml文件,照葫芦画瓢,仿照coco128.yaml c.修改tarin.py中的238行,改成自己新建yaml的路径 d.GPU训练(注释掉241行,修改device参数为0),若CPU训练(注释掉242行即可) e.运行train.py开始训练,当精度不在增加时,会自动停止训练。模型保存在ultralytics\yolo\v8\detect\runs\detect文件夹 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,也适用于小白学习入门进阶。当然也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或者热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载,沟通交流,互相学习,共同进步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值