1. 引言
布匹缺陷检测是纺织行业中非常重要的环节,传统的人工检测方式效率低下且容易受人为因素影响。随着深度学习技术的发展,基于目标检测算法的自动化检测系统应运而生,为布匹缺陷检测提供了高效且准确的解决方案。其中,YOLO(You Only Look Once)系列模型作为一种轻量级、快速且精确的目标检测算法,广泛应用于各种场景中。
本文将详细介绍如何基于YOLOv10/v8/v7/v6/v5的深度学习算法构建一个布匹缺陷检测系统,涵盖从数据集准备、模型训练、到UI界面设计的完整流程。我们还将提供 data.yaml 文件以及系统的完整代码,以帮助读者快速实现和部署布匹缺陷检测系统。
目录
2. YOLO目标检测算法简介
YOLO(You Only Look Once)是一种实时目标检测算法,它可以在单次前向传播中同时完成目标定位和分类任务。自YOLOv1发布以来,YOLO系列模型在多个版本中逐步提高了检测精度和速度。
2.1 YOLOv5
YOLOv5 是一个基于PyTorch框架实现的轻量级、高效的目标检测模型,具有很好的部署灵活性和速度优势,适合工业场景中如布匹缺陷检测这种实时检测任务。

订阅专栏 解锁全文
803

被折叠的 条评论
为什么被折叠?



