PTA 05-树9 Huffman Codes

PTA 05-树9 Huffman Codes

原题链接

题目理解

【来自陈越姥姥的讲解视频和PPT+自己的记录】
(1)Huffman编码不唯一
0和1可能互换
树的形状可能不一样
但是都是最优Huffman编码
注意:最优编码不一定通过Huffman算法得到!
因此题意不能仅仅理解为:编码是否符合Huffman树

(2)HuffmanCodes的特点
1.最优编码——总长度(WPL)最小
2.无歧义解码——前缀码:数据仅存于叶子结点

3.没有度为1的结点——满足1,2则必然有3(题目不必单独判断)
满足2和3的不一定满足1,因此不可以通过23直接判断是否HuffanTree(不可以跳过建树判断最优编码)

计算WPL

MinHeap H=CreateHeap(H);//建立空的、容量为N的最小堆
H=ReadData(N);//将f[]读入H->Data中
HuffmanTree T=Huffman(H);//建立Huffman树
int CodeLen=WPL(T,0);//计算WPL

递归计算WPL:
思想:该结点的WPL=左结点的WPL+右节点的WPL

int WPL(HuffmanTree T,int Depth){
   
   
	if(!T->Left&&!T->Right){
   
   //叶子节点=哈弗曼结点 
		return T->Weight*Depth;
	}else{
   
   
		return (WPL(T->Left,Depth+1)+WPL(T->Right,Depth+1));
		//左右子树的WPL和,注意Depth+1 
	}
}

检查编码

(1)长度是否正确
Len=求和strlen(code[i])*f[i];
比较Len和WPL值
注意:Code[i]的最大长度为?
N-1
(斜树->肯定错)

(2)建树的过程中检查是否满足前缀码要求

Code

参考博文

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MINDATA -10001
#define ERROR NULL
//哈夫曼树结点
typedef struct TreeNode *HuffmanTree;
struct TreeNode{
   
   
	int Weight;
	HuffmanTree Left, Right;
};
 
//最小堆
typedef struct HNode *Heap;
typedef Heap MaxHeap;
typedef Heap MinHeap;
typedef TreeNode ElementType;	//堆中每个结点都是哈夫曼树结点的类型
struct HNode {
   
   
	ElementType *Data;
	int Size;
	int Capacity;
};
 
MinHeap CreateHeap( int MaxSize ) {
   
   
	MinHeap H = (MinHeap)malloc(sizeof(struct HNode));
	//因为0位置是哨兵,所以MaxSize+1
	H->Data = (ElementType *)malloc((MaxSize+1) * sizeof(ElementType));
	H->Size = 0;
	H->Capacity = MaxSize;
	H->Data[0].Weight = MINDATA;
	H->Data[0].Left = H->Data[0].Right = NULL;
	return H;
}
 
bool IsFull( MinHeap H ){
   
   
	return (H->Size == H->Capacity);
}
 
bool Insert( MinHeap H, HuffmanTree T ) {
   
   
	//将元素X插入堆,其中H->Data[0]已经定义为哨兵
	int i;
	if( IsFull(H) ){
   
   
		printf("最小堆已满");
		return false;
	}
	i = ++H->Size; //i指向插入后堆中最后一个元素的位置
	for( ; H->Data[i / 2].Weight > T->Weight; i /= 2)
		H->Data[i] = H->Data[i / 2];
	H->Data[i] = *T;
	return true;
}
 
bool IsEmpty( MinHeap H ) {
   
   
	return (H->Size == 0);
}
 
HuffmanTree DeleteMin( MinHeap H ) {
   
   
	//从最小堆H中取出键值最小的元素,并删除一个结点;
	int Parent, Child;
	ElementType X;
	HuffmanTree MinItem = (HuffmanTree)malloc(sizeof(struct TreeNode));
	if( IsEmpty(H) ){
   
   
		printf("最小堆已空");
		return ERROR;
	}
	*MinItem = H->Data[1]; //取出根节点存放最小值
	//用最小堆最后的一个元素从根结点开始向上过滤下层结点
	X = H->Data[H->Size--];
	for( Parent = 1; 2 * Parent <= H->Size; Parent = Child){
   
   
		//Child指向左右子结点的较小者
		Child = 2 * Parent;
		if( Child != H->Size && H->Data[Child].Weight > H->Data[Child + 1].Weight )
			Child++;
 
		if( X.Weight <= H->Data[Child].Weight ) break;	//找到了合适位置,要 >=
		else  //下滤
			H->Data[Parent] = H->Data[Child];
	}
	H->Data[Parent] = X;
	return MinItem;
}
 
 
HuffmanTree CreateHuffmanNode(int weight){
   
   
	HuffmanTree T = (HuffmanTree)malloc(sizeof(struct TreeNode));
	T->Weight = weight;
	T->Left 
### 回答1: Huffman编码是一种用于数据压缩的算法,它通过将出现频率较高的字符用较短的编码表示,从而减少数据的存储空间。该算法的基本思想是构建一棵哈夫曼,将字符的出现频率作为权值,然后从叶子节点开始向上遍历,将左子标记为,右子标记为1,最终得到每个字符的编码。哈夫曼编码具有唯一性,即每个字符都有唯一的编码,且任何一个编码都不是另一个编码的前缀。 ### 回答2: Huffman编码是一种压缩数据的方式。它使用的基本原理是将数据中频繁出现的字符使用较短的编码,而不常用的字符使用较长的编码,以达到压缩数据的目的。在Huffman编码中,我们使用二叉来表示每个字符的编码。左孩子被标记为0,右孩子被标记为1。当我们从根节点到叶子节点的路径上移动时,我们收集的所有0和1的序列将编码作为该字符的压缩表示。 具体来说,生成Huffman编码的过程包括以下步骤: 1. 统计给定数据集中每个字符出现的次数。 2. 将字符作为叶子节点构建二叉,每个叶子节点包含一个字符和该字符的频率。 3. 选择频率最小的两个节点,将它们作为左右子合并成一个新节点,其频率等于两个节点频率之和。 4. 将新节点插入二叉,并在每个节点添加一个标记为0或1的位。 5. 重复步骤3和步骤4,直到只剩下一个节点。 6. 通过遍历收集每个字符的Huffman编码。递归,并在每个节点处添加0或1,直到我们到达一个叶子节点。 Huffman编码的优点在于它可以使数据更紧凑,占用更少的存储空间。它也是在许多压缩和编码算法中广泛应用的基础。Huffman编码的缺点是在压缩小数据时,压缩效果可能不明显。这是因为压缩率受到输入数据的分布和大小的影响。在Huffman编码中,来自数据集的所有字符的比特序列可能具有不同的长度。因此,我们需要在压缩和解压缩时花费一些额外的时间来恢复原始数据。 总之,Huffman编码是一种有效的数据压缩算法,可以通过使用二叉来表示每个字符的编码来实现。它的主要优点是可以更紧凑地存储数据,但它仍然受到输入数据大小和分布的影响,并且在进行压缩和解压缩时需要花费额外的时间。 ### 回答3: 题目描述 Huffman code是一种贪心算法,用于编码数据,每个字符都对应一种可辨识的前缀二进制码,使得所有字符的编码总长度最短。给定n个权值作为n个叶子结点,构造一棵二叉,若该的带权路径长度达到最小,则称这样的二叉为最优二叉,也称为赫夫曼。 在赫夫曼中,每个叶子节点的权值就是原始数据中的权值,而非叶子节点不存储权值,比较特别的一种二叉。 输入格式 第1行: 一个正整数n(<=1000) 接下来n行: 每行一个正整数weight[i](weight[i]<=100000) 输出格式 共n-1行,为赫夫曼编码表,每个字符的赫夫曼编码占据一行。 样例输入1 5 1 3 2 10 5 样例输出1 0 110 111 10 11 样例输入2 5 23 3 6 16 8 样例输出2 100 0 101 1101 1100 解题思路 首先,将所有节点的权值从小到大排序。 接着构造一棵二叉: 每次从节点集合中选出最小的两个节点(即最小的两个权值) 将这两个点组成一棵新的二叉,其权值为这两个节点权值之和,这棵新的左右子即为这两个节点。 把这棵新加入到权值序列中,其位置按照新的权值插入,继续循环,直到权值序列只含有一个节点为止,这个节点就是赫夫曼的根。 最后,根据赫夫曼将每个叶子节点的编码求出来,一般情况下,将左子编码置“0”,右子编码置“1”,然后做前缀无歧义编码,按照这种编码方式,我们得到了每个节点的Huffman编码。 代码实现
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值