剑指 Offer 14- I. 剪绳子(中等)

剑指 Offer 14- I. 剪绳子

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1

示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

提示:

  • 2 <= n <= 58

我的Java代码:
思路:

//切成几段不确定,但可以确定当每一段都大致相等的时候乘积最大
    public static int cuttingRope(int n) {
        //max即乘积最大值
        int max = 0;
        //for循环确定切分成几段
        for(int i = 2;i <= n;i++){

            int t = i;  //t表示还要切分成几段
            int sum = n;    //sum表示绳子剩余长度
            int product = 1;    //product为该种切分法下最大的乘积

            //while循环确定该种切分每段多长,并求出各段的乘积
            while(t > 0){

                int num = sum/t;     //num表示当前切出的一段有多长,因为每一段都大致相等时候乘积最大,因此当前段应为当前剩余长度的平均值

                //切分一段后剩余长度变短,乘积更新,剩余切分段数减少
                sum -= num;
                product *= num;
                t -= 1;
            }

            //System.out.println("max = "+max+", product = "+product);
            if(product > max){
                max = product;
            }else if(product < max){
                break;  //平均切分后的乘积基本成正态分布,因此当 product < max 时后续不再会出现更大的乘积
            }
        }
        return max;
    }

ps:若n的取值范围扩大,需要考虑溢出和大数取余。按p取余:(product % p) * num == (product * num) % p 。则上述代码中使用的最大值比较就不再适用,因为可能出现取余后数值变得很小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值