剑指 Offer 14- I. 剪绳子
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
- 2 <= n <= 58
我的Java代码:
思路:
//切成几段不确定,但可以确定当每一段都大致相等的时候乘积最大
public static int cuttingRope(int n) {
//max即乘积最大值
int max = 0;
//for循环确定切分成几段
for(int i = 2;i <= n;i++){
int t = i; //t表示还要切分成几段
int sum = n; //sum表示绳子剩余长度
int product = 1; //product为该种切分法下最大的乘积
//while循环确定该种切分每段多长,并求出各段的乘积
while(t > 0){
int num = sum/t; //num表示当前切出的一段有多长,因为每一段都大致相等时候乘积最大,因此当前段应为当前剩余长度的平均值
//切分一段后剩余长度变短,乘积更新,剩余切分段数减少
sum -= num;
product *= num;
t -= 1;
}
//System.out.println("max = "+max+", product = "+product);
if(product > max){
max = product;
}else if(product < max){
break; //平均切分后的乘积基本成正态分布,因此当 product < max 时后续不再会出现更大的乘积
}
}
return max;
}
ps:若n的取值范围扩大,需要考虑溢出和大数取余。按p取余:(product % p) * num == (product * num) % p 。则上述代码中使用的最大值比较就不再适用,因为可能出现取余后数值变得很小。