2021省赛真题—左儿子右兄弟

题目描述

对于一棵多叉树,我们可以通过 “左孩子右兄弟” 表示法,将其转化成一棵二叉树。

如果我们认为每个结点的子结点是无序的,那么得到的二叉树可能不唯一。

换句话说,每个结点可以选任意子结点作为左孩子,并按任意顺序连接右兄弟。

给定一棵包含 N​​ 个结点的多叉树,结点从 1​​ 至 N​ 编号,其中 1 号结点是根,每个结点的父结点的编号比自己的编号小。

请你计算其通过 “左孩子右兄弟” 表示法转化成的二叉树,高度最高是多少。

注:只有根结点这一个结点的树高度为 0​。

输入描述

输入的第一行包含一个整数 N。 以下N−1​​ 行,每行包含一个整数,依次表示 2​ 至 N 号结点的父结点编号。

输出描述

输出一个整数表示答案。

输入输出样例

示例 1

输入

5
1
1
1
2

输出

4

评测用例规模与约定

对于 30%​​ 的评测用例,1≤N≤20​;

对于所有评测用例,1≤N≤100000。

运行限制

  • 最大运行时间:1s
  • 最大运行内存: 256M

这道题用到深度优先搜索。(太菜了还是不会dfs) 看看大佬题解吧。

#include<iostream>
#include<vector>
using namespace std;
vector<int> f[100050];//f[i]容器中装的是以i结点为父亲的所有孩子结点
int dfs(int node) {
	int count = 0;//存储每一层的孩子的最大孩子数目
	for (int i = 0; i < f[node].size(); i++) {
		count = max(count, dfs(f[node][i]));//求结点孩子的最深层数
	}
	return count + f[node].size();//递归出口,count为node结点孩子的最大孩子数目,f[node].size()是node这一层兄弟数目
}
int main() {
	int n;//n为结点个数
	int t;//
	cin >> n;
	for (int i = 2; i <= n; i++) {
		cin >> t;
		f[t].push_back(i);// i结点的父亲是x结点  所以利用f[t].size()可以求得t结点的孩子数目
	}
	cout << dfs(1);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞飞鱼_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值