题目描述
对于一棵多叉树,我们可以通过 “左孩子右兄弟” 表示法,将其转化成一棵二叉树。
如果我们认为每个结点的子结点是无序的,那么得到的二叉树可能不唯一。
换句话说,每个结点可以选任意子结点作为左孩子,并按任意顺序连接右兄弟。
给定一棵包含 N 个结点的多叉树,结点从 1 至 N 编号,其中 1 号结点是根,每个结点的父结点的编号比自己的编号小。
请你计算其通过 “左孩子右兄弟” 表示法转化成的二叉树,高度最高是多少。
注:只有根结点这一个结点的树高度为 0。
输入描述
输入的第一行包含一个整数 N。 以下N−1 行,每行包含一个整数,依次表示 2 至 N 号结点的父结点编号。
输出描述
输出一个整数表示答案。
输入输出样例
示例 1
输入
5
1
1
1
2
输出
4
评测用例规模与约定
对于 30% 的评测用例,1≤N≤20;
对于所有评测用例,1≤N≤100000。
运行限制
- 最大运行时间:1s
- 最大运行内存: 256M
这道题用到深度优先搜索。(太菜了还是不会dfs) 看看大佬题解吧。
#include<iostream>
#include<vector>
using namespace std;
vector<int> f[100050];//f[i]容器中装的是以i结点为父亲的所有孩子结点
int dfs(int node) {
int count = 0;//存储每一层的孩子的最大孩子数目
for (int i = 0; i < f[node].size(); i++) {
count = max(count, dfs(f[node][i]));//求结点孩子的最深层数
}
return count + f[node].size();//递归出口,count为node结点孩子的最大孩子数目,f[node].size()是node这一层兄弟数目
}
int main() {
int n;//n为结点个数
int t;//
cin >> n;
for (int i = 2; i <= n; i++) {
cin >> t;
f[t].push_back(i);// i结点的父亲是x结点 所以利用f[t].size()可以求得t结点的孩子数目
}
cout << dfs(1);
return 0;
}