AI-应用实例
文章平均质量分 65
介绍一些机器学习,深度学习、nlp等代码实例。
Mr.Wiggles
一个只会发干到不能再干的干货AI科普博主
展开
-
用户画像洞察分类模型 - 前端页面展示
如何实现用户交互的前端页面千人千面?算法告诉你答案原创 2022-11-26 12:18:50 · 1484 阅读 · 0 评论 -
机器学习 之 客户分群案例
随着信息爆炸的时代来临。企业的用户量级和个人信息也呈指数型增长。难以管理用户关系难以了解不同用户群的特点竞争市场越来越激烈盲目营销的成本越来越大接下来通过一个真实历史交易数据集,通过LTV(客户生命周期价值)统计分析和聚类的方法分析不同用户群的特点,使得业务能够精准营销,从而降低营销成本。提示:以下是本篇文章正文内容,下面案例可供参考以上的客户分群角度主要是通过用户的历史交易信息RFM进行搭建分析。原创 2022-08-24 11:43:49 · 1429 阅读 · 0 评论 -
因果推断 之 初介绍 + 案例分析
因果推断原创 2022-08-05 17:30:40 · 3078 阅读 · 4 评论 -
三大集成学习之万金油 - Catboost
Catboost是何方神仙?转载 2022-07-04 15:51:41 · 711 阅读 · 0 评论 -
如何解释模型预测?常用4种可解释性分析方法~
#模型可解释性原创 2022-06-24 11:34:23 · 6046 阅读 · 2 评论 -
CNN之绘画风格迁移-附源码地址
原图:原创 2021-12-07 16:36:11 · 1374 阅读 · 1 评论 -
机器学习基础-关于matplotlib的动态图显示操作
动态显示曲线图#动态显示曲线图%matplotlib inlinefrom IPython import displayimport time#循环每个数据点datafor i in range(len(data)): #画出当前循环位置的曲线图(如下是画出训练集和验证集的损失曲线图) plt.plot(loss_train_ls[:i],label = 'Train') plt.plot(loss_val_ls[:i],label = 'Validation') #每原创 2021-10-21 15:00:17 · 485 阅读 · 0 评论 -
机器学习基础-关于matplotlib的中文字符显示问题
在画图之前输入以下代码即可显示中文标题or标签import matplotlib.pyplot as pltplt.rcParams['font.family']='Microsoft YaHei' #显示中文标签plt.style.use ('ggplot') #设定绘图风格原创 2021-10-22 11:46:51 · 202 阅读 · 0 评论 -
阿里云安全大赛与贷款违约预测-代码思路分享
赛事介绍赛题以预测用户贷款是否违约为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。思路分享该比赛主要是围绕着借款人的多个维度信息,对其违约行为进行预测,是一个经典的二分类问题。赛题的关键点在于构造新特征,因为贷款违约预测与业务原创 2021-08-05 13:56:43 · 1032 阅读 · 0 评论 -
百度点击反欺诈比赛-代码思路分享
思路分享该比赛的数据主要围绕着用户和广告商的不同特征维度进行展开,特征工程的难点在于数据清洗部分,比如osv,version等字段,需要通过正则手段取出关键信息。除此之外,时间维度的展开存在多个共线性,需要斟酌拿取适合的时间信息。最后,target encoding是个万能的提分手段,分组聚合不同类别特征的label信息,总结出不同特征的欺诈分布。模型catboostxgboostlightgbm(后面发现LGB的效果并没有XGB好,所以没采用)五折+模型平均融合代码展示import n原创 2021-07-21 11:00:07 · 532 阅读 · 3 评论 -
Road 2 AI-GCN
什么是GCNGraph Convolutional Networks,图卷积神经网络,实际上跟CNN一样,就是一个特征提取器,只不过它的对象是图数据。GCN就精妙的设计了一种从图数据中提取特征的方法,从而让我们可以使用这些特征去对图数据及逆行处理:节点分类(node classification)图分类(graph classification)边预测(link prediction)图嵌入表示(graph embedding)GCN应用已经渗透在CV,NLP,RS中GCN算法的优势原创 2021-06-05 12:53:34 · 197 阅读 · 0 评论 -
Road 2 AI-NN简易神经网络的建立流程
神经网络建立简易流程import tensorflow.keras as kerasfrom tensorflow.keras import Sequentialfrom tensorflow.keras import Densekeras.layers.BatchNormalization()#归一化model = Sequential()#创建连接层#kernel_initializer初始化操作model.add(Dense(1024,activation = 'relu',kernel原创 2021-05-10 11:02:50 · 191 阅读 · 0 评论 -
Road 2 AI-Textrank/Tfidf的简单运用
from textrank4zh import TextRank4Keyword,TextRank4Sentence#关于‘家庭户平均人口跌破3意味着什么?’的评论text = '家庭户规模缩小、家庭户数增长,会带来什么影响?新一指出,家庭户规模缩小,这意味着家庭发展能力和传统功能越来越弱化,造成家庭关系的简约化,从蜘蛛网结构变为单线联系,亲情帮助弱化。这会对家庭养老造成影响,也要求产品的供给适应家庭的小型化,适老化、适小化是大的趋势。他表示,比如现在大户型的房子并不好卖,反而是户型适中的房子更受欢迎。原创 2021-05-12 13:31:17 · 127 阅读 · 0 评论 -
Road 2 AI-基于Pagerank的有向图创建
import networkx as nximport matplotlib.pyplot as plt#创建有向图G = nx.DiGraph()#设置有向图的边集合edges = [('A','B'),('A','C'),('A','D'),('B','A'),('B','D'),('C','A'),('D','B'),('D','C')]#在有向图中加入边集合for edge in edges: G.add_edge(edge[0],edge[1]) #对有向图进行可原创 2021-05-12 11:46:49 · 250 阅读 · 0 评论 -
Road 2 AI-DNN+Softmax+鸢尾花案例
IRIS数据集介绍 IRIS数据集(鸢尾花数据集),是一个经典的机器学习数据集,适合作为多分类问题的测试数据,它的下载地址为:http://archive.ics.uci.edu/ml/machine-learning-databases/iris/。 IRIS数据集是用来给鸢尾花做分类的数据集,一共150个样本,每个样本包含了花萼长度(sepal length in cm)、花萼宽度(sepal width in cm)、花瓣长度(petal length in cm)、花瓣宽度(petal wi转载 2021-05-11 20:14:11 · 617 阅读 · 0 评论 -
Road 2 AI-Word Embedding
这次我们来简单讲一下什么时候Word Embedding和其常用的使用工具。首先,什么是Embedding?Embedding其实是一种降维的方式,即将不同的特征转换为维度相同的向量。离线变量转换成Onehot,就会造成维度特别高的现象,可以将他转换为固定size的embedding向量。任何物体、特征,都能转换为向量的表达形式。而向量之间可以使用相似度进行计算。当我们进行推荐的时候,可以选择相似度最大的。可以参考下图的解释那么在文字中,我们同样可以将word转换为embedding原创 2021-06-01 11:09:04 · 192 阅读 · 0 评论