深度学习笔记
学习深度学习过程中的笔记
Hao &
这个作者很懒,什么都没留下…
展开
-
pytorch深度学习实践11——卷积神经网络(高级篇)
一个块:Inception 1x1卷积最主要的工作:改变通道数,减小复杂度 Inception的实现 class InceptionA(nn.Module): def __init__(self.in_channels): super(InceptionA, self).__init__() self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1) self.branch5X5_1 = nn.Con...原创 2021-05-11 15:29:02 · 172 阅读 · 0 评论 -
pytorch深度学习实践10——卷积神经网络(基础篇)
1 二维卷积神经网络 import torch in_channels, out_channels=5, 10 witdh, height ![在这里插入图片描述](https://img-blog.csdnimg.cn/20210510170655629.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1ZpbGxhOTc0,size_16,co原创 2021-05-10 21:35:52 · 205 阅读 · 0 评论 -
pytorch深度学习实践9——多分类问题
具体流程: 0 Import Package import torch from torchvision import transforms #针对图像对数据进行原始处理 from torchvision import datasets from torch.utils.data import DatatLoader import torch.nn.functional as F #激活函数 import torch.optim as optim 1 Prepare Dataset batch原创 2021-05-10 14:50:28 · 131 阅读 · 0 评论 -
pytorch深度学习实践4——反向传播
利用pytorch实现反向传播,简单代码 # -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import torch x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] w = torch.Tensor([1.0]) w.requires_grad = True def forward(x): return x * w def los原创 2021-04-27 21:07:47 · 134 阅读 · 1 评论