Codeforces Round #506 (Div. 3) A. Many Equal Substrings

博客围绕构造字符串问题展开,给定长为n的字符串t和整数k,需构造长度最小的字符串s,使其恰好有k个子串等于t。介绍了输入输出格式及示例,还提及解题思路,原本打算构造类似KMP的数组,因数据量小采用有回溯的方法并AC。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are given a string t consisting of n lowercase Latin letters and an integer number k.

Let's define a substring of some string s

with indices from l to r as s[l…r]

Your task is to construct such string s

of minimum possible length that there are exactly k positions i such that s[i…i+n−1]=t. In other words, your task is to construct such string s of minimum possible length that there are exactly k substrings of s equal to t.

It is guaranteed that the answer is always unique.

Input

The first line of the input contains two integers n

and k (1≤n,k≤50) — the length of the string t

and the number of substrings.

The second line of the input contains the string t

consisting of exactly n

lowercase Latin letters.

Output

Print such string s

of minimum possible length that there are exactly k substrings of s equal to t.

It is guaranteed that the answer is always unique.

Examples

Input

3 4
aba

Output

ababababa

Input

3 2
cat

Output

catcat

题目大意:给出长为n的字符串,构造出最短的包含k个给出字符串子串的字符串。

思路:本来打算构造一个类似KMP的next数组的数组,但是看着数据量似乎并不大就写了一个有回溯的AC了,懒了一下。

#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
char c[55];
int main()
{
    int n,k;
    cin>>n>>k;
    cin>>c;
    int t=0;
    for(int i=1;i<n;i++)
    {
        if(c[i]==c[t])
        {
            t++;
        }
        else
        {
            i=i-t;
            t=0;
        }
    }
    for(int i=0;i<t;i++)
        cout<<c[i];
    for(int i=0;i<k;i++)
    {
        for(int j=t;j<n;j++)
            cout<<c[j];
    }
    cout<<endl;
}

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值