【第四章 线性代数之矩阵乘法和线性变换复合】3Blue1Brown

4.矩阵乘法和线性变换复合

4.1复合变换

在空间的变换中,每种变换可以通过其他变换组合而成,比如说先逆时针转90度然后再逆时针转90度,这和逆时针转180度最后得到的结果是一样的。

举个视频中的例子,比如对一个向量先旋转然后再进行剪切(剪切运动如果不明白的,可以看下图中矩阵,按照第三章中讲得矩阵,自行画一下),如下图对应的矩阵,相当于先对(x,y)向量先左乘一个旋转矩阵,然后再在这个基础上左乘一个剪切矩阵。
在这里插入图片描述

按照矩阵乘法的运算规则,其实上面的变换就可以等价于下面的变换。
在这里插入图片描述
所以:两个矩阵相乘有几何意义,也就是两个线性变换相继作用(尤其是这个相继,记得矩阵乘法是不满足交换律的,在每次线性变换的时候我们都是通过左乘一个矩阵,所以,相继的意思是这个矩阵代表的线性变换是从右向左执行的。)

看下面图片中这个例子,M1和M2两个矩阵的线性变换向量i和j分别移动到什么位置了呢?
在这里插入图片描述
首先,经过M1,i肯定移动到了(1,1)的位置,然后要在此基础上进行M2表示的线性转换,因此向量(1,1)左乘矩阵M2才能够得到(1,1)经历M2线性变换的位置,而不是单单左乘M2矩阵的第一列。同理可以计算出j向量目前移动到什么位置。计算过程如下:
在这里插入图片描述
然后我们用通用的字母代替具体的数字:
i向量的计算:
在这里插入图片描述
j向量的计算:

在这里插入图片描述
所以,最终的结果为:
在这里插入图片描述
通过矩阵乘积表示线性变换,同样可以对矩阵乘法不满足交换律进行证明。比如先进行剪切运动和先进行旋转进行画图测试一下~

附注1-三维空间中的线性变换

之前的解说都是在平面上展开的,在平面上学习比较直观也比较容易理解。如果二维上的知识已经掌握的差不多了,就可以直接套在高维空间上。

以三维向量举例,与之前不同的是,三维空间中我们有三个通常使用的标准基向量,那么三维空间中的线性变换也可以通过基向量的变换进行计算。

考虑个简单线性变换的例子:沿y轴旋转90度,各个基向量的变化:
在这里插入图片描述
任意一个向量也可以通过基向量进行表示,只不过现在无论是基向量,还是该向量的坐标,都表示成三个数的了。在这里插入图片描述
线性变换也是一致的:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值