10.特征向量与特征值
10.1特征值和特征向量性质
**只有对前面讲的内容有充分的几何直观,你才能真正理解特征向量与特征值。**其中最重要的是了解如何将矩阵看作线性变换。当然也需要熟悉行列式,线性方程组,基变换等。
下面考虑一个二维空间中的变换(原来的基向量通过左上角矩阵变换成右下角对应的向量。):
通过上面的图,我们非常容易看出来,之前相互垂直的向量发生了变化。那么相比较之前的空间(原来的平面直角坐标系),现在的向量方向可能发生了变化。那么经过变换之后,是否存在一些变量只在长度上发生了变化,方向并未发生改变呢?当然啦,上图中基向量由原来的(1,0)变为(3,0)就是这种情况,不过请看下面这张图还有其他向量处于这种状态:
上图中黄线表示出的向量,它在原空间(平面直角坐标系)中对应的就是在灰色网格的对角线上,经过变换之后依然在对角线上。这意味左上角的矩阵对它的作用仅仅是拉伸或者是压缩而已,如同一个标量。这个向量留在了它所张成的空间里。
那么在这个空间中有只有两类向量方向没有发生变化如下图:
- 横轴上的向量
- 对角线上的向量
**这些特殊向量就被称为变换的 “特征向量”。**每个特征向量都有一个所属的值,被称为“特征值”。
特征值:衡量特征向量在变换中拉伸或压缩比例的因子。
当然,拉伸或者压缩的特征值刚好为正并没有什么特殊的地方。
但是有的特征值为负数。
这意味,这个向量被反向了,并且压缩为原来的1/2
- 变换前:
- 变换后:
但是重点在于:它停留在它张成的直线上,并未发生旋转。
10.2特征值和特征向量的作用
比如在三维空间中寻找旋转轴(其他向量都在改变方向),注意在这种情况下特征值一定是1。因为单纯的旋转不会对向量进行拉伸或者是压缩。
10.3 特征值和特征计算的要点
上面就是求解时的计算方程。一个变换矩阵和一个向量的乘积,等于一个数字和这个向量的乘积。
- 我们可以利用单位矩阵,对上式进行移项:
- 接下来就是寻找一个向量V,使得这个新矩阵与V相乘结果为0向量。
如果v本身是零向量的话,等式恒成立。但是这样没意思,我们需要的是一个非零特征向量。通过第五章和第六章的学习,我们知道:**当且仅当矩阵代表的变换将空间压缩到更低维度时,才会存在一个非零向量,使得矩阵和它的乘积为零向量。**而空间的压缩对应的就是矩阵的行列式为零。
完整推导过程如下:
但是**特征向量并不一定存在。**比如,平面直角坐标系逆时针旋转一周。
计算得出来的结果是这样的:
显然这个方程是没有解的,也就是特征向量并不存在。
注意:可能会出现只有一个特征值,但是特征向量不在一条直线上的情况。
比如这个:一个简单的例子是将所有的向量都变成两倍。这种情况下唯一的特征值是2,但是平面内每一个向量都是属于这个特征值的特征向量。
10.4 特征基
如果我们的基向量恰好是特征向量,会怎样?
比如:从上方的矩阵中我们可以看到,除了对角元素意外其他元素均为0,这种矩阵也被称为对角矩阵。解读它的方法是:所有基向量都是特征向量。矩阵的对角元就是他们所属的特征值。
ps:原来的基向量(以2维举例,那么他原本的基向量对角全是1,变换矩阵就是变换之后的基向量,那么对应的元素就是变换为原来的多少倍,也就是特征值!)