数据分析:留存率曲线拟合

留存率是数据分析中的稳定指标,用于用户分类和规模预测。本文介绍了使用Excel、SPSS和Python进行留存率曲线拟合的方法,通过对比不同拟合效果,展示如何评估拟合优度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

留存率,在数据分析中,我认为是一个比较好用的指标,因为比较稳定,不会很容易受外界因素的干扰,大幅波动。例如活动,推广等。可以用来做用户的分类,做用户规模预测。

我们看到的留存曲线通常是这样的:


这里介绍几种留存率曲线拟合的方法:

1.用excel 拟合:

拟合样本,1日~12日留存率,画好曲线图后,为曲线图添加趋势线,选择对数或者幂函数(通常对数比较多),显示公式和R平方值,R平方值越接近1,说明拟合效果越好。

如下图,蓝色曲线为真实值,拟合的橙色点线和真实值还是有差异,但效果还是不错的。

y=-0.055ln(x)+0.6382, R平方=0.9894



2.SPSS拟合

操作ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值