[leetcode]18. 4Sum

题目地址

https://leetcode.com/problems/4sum/

题目大意

有一组数a[n],给定一个目标数target,从a[n]找出4个数,使得sum(a[i], a[j], a[p], a[q]) = target。输出所有这样的4个数的组合。并且组合中的数要从小到大排列。

解题思路

这是一系列的题目,叫做k sum。求解k sum的方法,可以通过求解2sum来推导。

2sum

求解2sum想到的最暴力的方法是遍历所有组合,然后找出符合要求的。这时的时间复杂度为O(n^2)
有没有更简单的方法呢。显然是有的。我们可以先将数组排序。然后使用两个指针,分别指向数组的头和尾然后使用如下的方法来遍历这个数组。

int left = 0;
int right = n - 1;
while (left < right) {
    int sum = a[left] + a[right];
    if (sum == target) {
        record_left_right(left, right);
    } else if (sum < target) {
        left++;
    } else {
        right--;
    }
}

这样,我们的时间复杂度就为O(nlogn) + O(n) = O(nlogn)

推广到K sum

对于所有的k sum,我们都能把它退化为 k-1 sum。方法是,选定一个数a[i],然后计算new_target = target - a[i]k - 1 sum问题。
这样,我们可得 k sum(k >= 3)的时间复杂度为O(nlogn) + O(n^(k - 1)) = O(n^(k - 1))

源码

class Solution {
public:
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        vector<vector<int>> result;
        int num_num = nums.size();
        if (num_num < 4) {
            return result;
        }

        sort(nums.begin(), nums.end());

        set<vector<int>> tmpres;

        for (int outer = 0; outer < num_num; ++outer) {
            for (int inner = outer + 1; inner < num_num; ++inner) {

                int left = inner + 1;
                int right = num_num - 1;

                while (right > left) {

                    int tmp_result = nums[outer] + nums[inner] + nums[left] + nums[right];
                    if (tmp_result == target) {
                        vector<int> tmp;
                        tmp.push_back(nums[outer]);
                        tmp.push_back(nums[inner]);
                        tmp.push_back(nums[left]);
                        tmp.push_back(nums[right]);
                        --right;
                        ++left;
                        bool duplicate = false;

                        tmpres.insert(tmp);

                    } else if (tmp_result < target) {
                        ++left;
                    } else {
                        --right;
                    }
                }
            }
        }

        auto it = tmpres.begin();
        for(; it != tmpres.end(); it++)
            result.push_back(*it);
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值