1、归并排序,需要进行针对元素进行拆分和组合,对元素的拆分可以利用递归的方式进行拆分,当达到最小单位时候,进行比较大小,然后进行临时存储
2、拷贝数组时,不是最后进行拷贝到临时的存储地址的,而是每次进行递归合并时候进行一次拷贝保存
// 归并排序
import java.util.Arrays;
public class MergetSortDemo {
public static void main(String[] args) {
int[] arr = {8, 4, 5, 7, 1, 3, 6, 2};
int[] temp = new int[arr.length];
mergeSort(arr,0,arr.length-1,temp);
System.out.println(Arrays.toString(arr));
}
// 归并排序算法实现代码
// 合并方法
/*
* @param arr 排序的原始数组
* @param left 左边有序序列的初始序列
* @param mid 中间索引
* @param right 右边有序序列的初始序列
* @param temp 辅助数组
*
*/
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
int mid = (left + right) / 2;// 中间索引
// 向左递归进行分解
mergeSort(arr, left, mid, temp);
// 向右递归进行分解
mergeSort(arr, (mid + 1), right,temp);
// 合并
merge(arr, left, mid, right, temp);
}
}
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left; // 初始化i,左边有序序列的初始索引
int j = mid + 1; // 初始化j,右边有序序列的初始索引
int t = 0; // 指向temp数组的当前索引
// (一)先把左右的两边的数据按照规则填充到temp数组中
// 直到左右两边的有序序列,有一边处理完毕为止
while (i <= mid && j <= right) { // 只要左边的指针不到达中间的界限之外,和右边的指针不到达数组的最右边,之间的数组拷贝将继续
// 继续
// 如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
// 即将左边的当前元素拷贝到temp数组中,同时,temp数组中的t下标也要进行加一,
if (arr[i] <= arr[j]) {
temp[t] = arr[i];
i += 1;
t += 1;
} else {
temp[t] = arr[j];
j += 1;
t += 1;
}
}
// (二)
// 将剩余的一方的数据依次填充到temp中
while (i <= mid) { // 左边的还有数据剩余的元素,就自动填充到temp中
temp[t] = arr[i];
i += 1;
t += 1;
}
while (j <= right) { // 右边的还有数据剩余的元素,就自动填充到temp中
temp[t] = arr[j];
j += 1;
t += 1;
}
// (三)
//将temp的数据拷贝到arr中
// 不是每次都是拷8个元素
t = 0;
int tempLeft = left;
// 递归的问题
// 第一次tempLeft = 0 right = 1// tempLef = 2 right = 3 // templeft = 0 right = 3;
// 最后一次tempLeft = 0 right = 7
while (tempLeft <= right) {
arr[tempLeft] = temp[t];
t += 1;
tempLeft += 1;
}
}
}