游戏数值策划入门·第二节课
课程简介
本节课将深入探讨数值策划中的公式建模与数值分布设计。通过案例演示,帮助你掌握游戏中的数值系统如何通过公式建模实现可控与可调。
课程目标 |
---|
1. 学习数值公式建模的基本思路和步骤。 |
2. 掌握经验曲线、伤害计算公式、经济系统设计方法。 |
3. 理解参数化设计与可调试性的关键作用。 |
数值公式建模
公式建模是将游戏中的数值关系用数学公式抽象出来的过程。一个良好的模型应具备逻辑性、可调节性、可控性。
建模示例:角色经验需求公式 |
---|
目标:角色等级1-50,每级升级经验逐渐增加,满级需约100,000经验。 |
公式选择:(\text{经验需求}(L) = a \times L^n + b \times L + c)。 |
参数调整:确定1级升2级为100经验,50级升51级为10,000经验。 |
验证:在电子表格中绘制经验需求曲线,确保平滑且合理。 |
常见数值公式类型
- 等级-属性成长公式
[
\text{属性}(L) = \text{初值} + \Delta \times L \quad \text{(线性)}
]
或
[
\text{属性}(L) = \text{初值} \times L^n \quad \text{(非线性)}
]
优缺点对比 | 线性增长 | 非线性增长 |
---|
优点 | 简单易控,玩家预期明确 | 能体现等级差距,适用于中后期表现强化 |
缺点 | 后期变化不足,可能乏味 | 易失控,需更严格的参数校准 |
- 伤害计算公式
[
\text{伤害} = \text{攻击力} - \text{防御力}
]
或
[
\text{伤害} = \text{攻击力} \times \frac{1}{1 + \text{防御力}/k}
]
场景 | 公式特点 |
---|
单机战斗 | 简单公式即可,如直接扣减攻击与防御差值。 |
PvP模式 | 引入非线性关系,平衡高攻与高防角色对抗体验,如引入平衡系数 (k)。 |
参数化设计与可调试性
通过参数化设计,将公式的核心部分用参数化配置,并保存在表格中,便于微调与快速验证。
参数化公式示例 |
---|
[ |
\text{经验需求}(L) = A \times L^2 + B \times L + C |
] |
- 修改:若满级升级经验过高,可调整 (A) 或 (B) 降低整体难度。
- 验证:在表格中查看调整后的等级曲线是否符合需求。
案例分析与实战演示
案例1:角色经验需求曲线
等级 | 经验需求公式 | 经验值 | 累计经验 |
---|
1 | (100 \times L^1.5) | 100 | 100 |
2 | (100 \times 2^1.5) | 282 | 382 |
3 | (100 \times 3^1.5) | 519 | 901 |
… | … | … | … |
图形化演示 |
---|
用 Excel 制作折线图查看曲线变化:前期平滑、后期陡峭,确保合理性。 |
案例2:关卡奖励分布
目标 | 随关卡数提升奖励逐步增加,但50关后快速提高玩家收益。 |
---|
关卡数 | 公式 | 奖励货币 |
---|
1-49 | (M = 100 + 5 \times L) | 105-345 |
50-100 | (M = 200 + 10 \times (L - 50)) | 200-700 |
| 曲线观察 | 前期平稳增长,后期大幅提高奖励,激励玩家深度探索。 |
课后练习
-
设计角色血量公式:
[
\text{HP}(L) = aL^2 + bL + c
]
要求1级血量为100,10级血量为1000,在电子表格中调整参数 (a, b, c),确保曲线符合预期。
-
设计关卡奖励公式:
制作一个玩家通关1-50关奖励的曲线表,前25关增幅较低,后25关增幅显著,要求画出对应曲线图。
小结
学习要点 |
---|
- 掌握数值公式建模流程:明确需求、公式选型、参数调整与验证。 |
- 理解经验曲线、伤害公式、经济系统数值设计的基础。 |
- 通过参数化设计提高数值系统的可控性和可调试性。 |
下一节预告
在第三节课中,我们将探讨更复杂的数值平衡问题,学习如何结合玩家行为数据进行数值迭代优化,并完成一套完整的数值体系设计。